
Semi-supervised t-SNE for Millimeter-wave
Wireless Localization

Junquan Deng1,*, Wei Shi1, Jian Hu1, Xianlong Jiao2

1Sixty-third Research Institute, National University of Defense Technology, China, Emails: jqdeng@nudt.edu.cn
2College of Computer Science, Chongqing University, China, Email: xljiao@cqu.edu.cn

Abstract—We consider the mobile localization problem in
future millimeter-wave wireless networks with distributed Base
Stations (BSs) based on multi-antenna channel state informa-
tion (CSI). For this problem, we propose a Semi-supervised t-
distributed Stochastic Neighbor Embedding (St-SNE) algorithm
to directly embed the high-dimensional CSI samples into the 2D
geographical map. We evaluate the performance of St-SNE in a
simulated urban outdoor millimeter-wave radio access network.
Our results show that St-SNE achieves a mean localization error
of 6.8 m with only 5% of labeled CSI samples in a 200×200 m2

area with a ray-tracing channel model. St-SNE does not require
accurate synchronization among multiple BSs, and is promising
for future large-scale millimeter-wave localization.

Index Terms—Channel-state information (CSI), millimeter-
wave, wireless localization, semi-supervised learning, t-SNE

I. INTRODUCTION

The mobile location information of User Equipments (UE)
is critical for many smart city applications, including traffic
monitoring, asset tracking, autonomous driving, emergency
rescue and so forth. Currently, mobile localization heavily
depends on global navigation satellite system (GNSS) tech-
nologies, but GNSSs are not omnipotent for all kinds of
applications and all scenarios. For example, a GNSS may fail
to provide reliable position estimates due to signal blockage
in dense urban areas. Furthermore, continuous reception
and detection of GNSS signals is a major part of battery
consumption for many mobile devices. In some applications
where a central entity needs to collect location information
from massive user devices, GNSS is not adequate as users
may refuse to report their GNSS information. Due to these
problems, we need to resort to other complementary methods
for localization and positioning where GNSSs are not suitable.

Future 5G and beyond radio access networks (RANs) are en-
visioned to be densely deployed with massive multiple-antenna
Base Stations (BSs) and high-frequency carrier frequencies,
such as millimeter-wave (mmWave), to provide ubiquitous
ultra-fast and reliable wireless connections. In addition to
communication, the large-scale dense RAN infrastructure, the
massive antennas and the wide high-frequency bands can also
be leveraged for sensing and localization purposes [1]–[4].

However, current 5G New Radio positioning techniques [5]
are based on triangulation with Angle-of-Arrival (AOA) or
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trilateration with Time-Difference-of-Arrival (TDOA) mea-
surements at multiple BSs, which require accurate calibration
and synchronization among RAN elements, and thus incur
high deployment and maintenance costs for the operators.
Moreover, the performance of these methods degrades in
complex multi-path and obstructed environments. Finger-
printing techniques [6]–[8] could be applied for cellular
positioning in such challenging propagation environments.
However, they require a large amount of dedicated and
densely-sampled labeled measurements, so scale poorly to
large areas and render automatic operation and maintenance in
dynamic environments challenging. As unlabeled samples are
easier to be collected, semi-supervised learning methods [9]
with both labeled and unlabeled data are promising for
automatic large-scale localization. Semi-supervised learning
has attracted increasing attention for positioning based on
Received Signal Strength Indicator (RSSI) fingerprints [10],
[11]. However, research work on utilizing multi-antenna
Channel State Information (CSI) [12], [13] for high-precision
and seamless localization in a networking environment is still
limited.

Recently, channel charting [14], [15] has been proposed to
use sporadically collected multi-antenna CSI samples from
unknown locations to construct a channel chart that can
provide relative position information among UEs. Channel
charting exploits the fact that high-dimensional multi-antenna
CSI strongly depends on the low-dimensional 2D/3D UE
location as a result of physical law of radio propagation.
Several works [16]–[18] have dedicated to equip channel
charting with absolute positioning capabilities. In [16], a
semi-supervised auto-encoder has been proposed to utilize a
subset CSI of samples with known spatial locations, as well as
mobility side information to locate UEs in a single cell. In [17],
Sammon’s mapping (SM) and Siamese neural network are
combined in an unified channel charting framework to provide
both unsupervised relative localization, and semi-supervised
absolute positioning. Unfortunately, in a scenario with chal-
lenging non-Line-of-Sight (NLOS) propagation channels, the
localization performance of [16], [17] is not satisfying. In
addition, these two methods have not considered the more
realistic large-scale multi-cell scenario with multiple BSs. For
multi-cell localization, a semi-supervised multi-point channel
charting (SS-MPCC) framework has been put forward in [18].
In SS-MPCC, multiple distributed BSs collect wireless data



Fig. 1. Semi-supervised multi-point channel charting framework for St-SNE.

from mobile UEs and learn an aligned channel chart in which
historical and real-time mobile locations can be determined.
It uses Semi-supervised Laplacian Eigenmap (SLE) with
both labeled CSI and time-stamp information to increase
the smoothness and trustworthiness of the learned channel
chart, and greatly improves the localization performance.

In this paper, we propose a new machine learning algorithm,
called Semi-supervised t-distributed Stochastic Neighbor
Embedding (St-SNE for short), for 5G and beyond mmWave
localization based on the SS-MPCC framework. The original t-
distributed Stochastic Neighbor Embedding (t-SNE) technique
is a statistical method for visualizing high-dimensional data,
such as images, audios and DNA sequences, by giving each
sample a location in a two or three-dimensional (2D/3D)
map, as long as there is a suitable similarity metric for two
samples. It has been used in a wide range of applications,
including natural language processing, image pattern analysis,
bioinformatics, etc. Directly applying t-SNE to map the CSI
data to a 2D map can also provide some interesting results
as in [15], but the generated 2D map cannot be used for
practical positioning applications. To this end, in St-SNE, we
first consider using a few position labels to guide the learning
process of t-SNE to produce a map that relate to the true
geographical UE positions. To demonstrate the effectiveness of
St-SNE, we perform simulations in an urban outdoor multi-
cell mmWave network, using a simulator that models UE
distribution in a Manhattan street grid and the complex radio
propagation conditions. We show that St-SNE significantly
improves the localization performance compared with other
conventional techniques.

II. MMWAVE LOCALIZATION FRAMEWORK

The multi-cell mmWave localization framework is shown in
Fig. 1. Similar to [18], it consists of a labeled and unlabeled
CSI samples collection procedure, feature extraction and local
dissimilarity matrix construction procedures at distributed
units (DUs), as well as global dissimilarity matrix construction
and semi-supervised manifold learning procedures conducted
at the centralized unit (CU).

A. Channel Model

We consider a typical 5G mmWave cellular network where
multiple UEs move in the coverage area of multiple BSs.
The UEs send Orthogonal Frequency Division Multiplex-
ing (OFDM) pilot signals to BSs for channel estimation. An
estimated multi-antenna channel vector at time t on a sub-
carrier with frequency f is modelled as

ht,f =
∑K

k=1
α
(k)
t,f s(ϕ

(k)
t ) + e, (1)

where K denotes the number of multi-path components, ϕ(k)
t

the direction-of-arrival (DOA) of the kth propagation path,
and α

(k)
t,f a random complex gain for the kth path. In addition,

e represents the channel estimation error, and s(ϕ) the array
steering vector (ASV). We assume an M -antenna uniform
linear array is used at a BS, and the ASV is

s(ϕ)=
[
1, ej

2π
λ s sin(ϕ), . . . , ej(M−1) 2π

λ s sin(ϕ)
]T

, (2)

with λ the carrier wavelength and s the antenna spacing.

B. CSI Collection and Dissimilarity Matrix Construction

The channel vector ht,f itself changes rapidly when the
UE moves across multiple wavelengths. In comparison, the
multipath DOAs {ϕ(l)

t,f} and gains {α(l)
t } change more slowly.

We use the frequency-domain covariance C = Ef

[
ht,fh

H
t,f

]
as the CSI sample for localization, as it depends on the
multipath DOAs and gains, and changes slowly when UE
moves.

We assume there are B BSs, they will collect CSI samples
from multiple UEs during network operation. There are two
types of CSI samples, with or without position labels. The first
type has the corresponding UE position information which
can be gathered in a dedicated site survey or reported by
UEs with GNSS capability, while the second type is collected
from UEs which need to be located or tracked. After data
collection, we assume there are L labeled CSI samples at BS
b, denoted by L(b) = {C(b)

1 , . . . ,C
(b)
L }. The corresponding

ground-truth location coordinates are Y = [y1, . . . ,yL]. The
in total U unlabeled samples collected at BS b can be denoted
as U (b) = {C(b)

L+1, . . . ,C
(b)
L+U}. The corresponding unknown

locations for the unlabeled samples are denoted by Ŷ =
[yL+1, . . . ,yL+U ]. We assume that multiple BSs can identity
the CSI samples coming from a specific UE at a same time
interval via UE ID and loose time synchronization. If an
UE’s pilot signals are not received by BS b at a time, the
corresponding CSI sample C

(b)
i is set to zeros. Each BS

will utilize a feature extraction function to extract the power
angular profile (PAP) of multipath components (MPCs) hidden
in the CSI sample and compute the dissimilarities among its
collected samples. The CU then fuse the local dissimilarities
and channel qualities information reported by BSs to construct
a global consistent dissimilarity matrix D ∈ RN×N , with
N = L+U . The details of the feature extraction, dissimilarity
metric and fusion procedures can found in [18]. The global
dissimilarity matrix D characterizes how similar the uplink
radio channel conditions for different UE positions.



III. SEMI-SUPERVISED T-SNE

The t-SNE [19] is an effective dimensional reduction and
manifold learning algorithm widely used for visualizing high-
dimensional data. This method learns a low-dimensional
representation Z = [z1, . . . , zN ] of the N data points by
minimizing the divergence between two distributions, i.e.,
a distribution that characterizes pairwise similarities of the
input data points, and a distribution that characterizes pairwise
similarities of the corresponding low-dimensional points
in the representation space. To this end, t-SNE defines a
symmetric probability matrix P with elements {pnm}Nn,m=1

that measures the pairwise similarity between nth and mth
input data points. Denote {dnm}Nn,m=1 the entities of the
dissimilarity matrix D, for n ̸= m, we have

pnm =
1

2
(pm|n + pn|m)

=
1

2

(
e−d2

mn/2σ
2
n∑

k ̸=n e
−d2

kn/2σ
2
n

+
e−d2

nm/2σ2
m∑

k ̸=m e−d2
km/2σ2

m

)
,

(3)

and pnm = 0 for n = m, with pm|n the conditional probability
the mth point is a neighbor of the nth point . The bandwidth
of the Gaussian kernels σn for the nth data point is set so
that 2−

∑
m pm|n log2 pm|n equals to a given parameter kt called

perplexity, e.g., using a 1D search method. The perplexity
can be interpreted as a measure of the effective number of
neighbors taken into account.

In the representation space, a matrix Q with element
{qnm}Nn,m=1 which measures the similarity between zn and
zm, is computed using a normalized t-distribution kernel by

qnm =
(1 + ∥zn − zm∥22)−1∑
l ̸=k(1 + ∥zl − zk∥22)−1

. (4)

The objective of t-SNE is to find a representation by
minimizing the Kullback-Leibler (KL) divergence between
the two distributions P and Q. The optimization problem is

(P1)

{
minimize

Z
ft-SNE(Z) =

∑
n

∑
m pnmlog pnm

qnm
,

subject to
∑N

n=1 zn = 0.

The objective function ft-SNE(Z) can be minimized by
gradient descent. Note that the KL divergence is not convex.
Different initializations will possibly end up in different local
minima of ftSNE(Z). Hence, it is useful to try different seeds
and choose the result with the lowest KL divergence. t-SNE is
computationally expensive, especially for large-scale data sets.
Larger perplexities lead to more neighbors and less sensitivity
to small-scale structure. By contrast, a lower perplexity
focuses on a smaller number of neighbors, and thus ignores
more global information favouring the local neighborhood
preservation. For a larger data set, larger perplexities are
required.

Directly solve problem P1 can not provide a 2D map with
estimated UE position information. To equip t-SNE with
localization capability, we need to use some position labels

Algorithm 1 The semi-supervised t-SNE algorithm
1: Inputs: D ∈ RN×N , {y1, . . . ,yL}, L = {1, . . . , L}
2: Cost function parameter: kt
3: Optimization parameters: T , η and α
4: Initialize: Z(0) = [z

(0)
1 , . . . , z

(0)
N ], Z(−1) = Z(0), with

5: z
(0)
i = yi, for i ∈ L,

6: z
(0)
i = yn, for i /∈ L and dn,i is smallest for all n ̸= i

7: Use binary search to determine the kernel sizes {δn}Nn=1,
and compute the probability matrix P using (3)

8: for t = 1, . . . , T do
9: Compute probability matrix Q using (4)

10: Compute ∇ = [dft-SNE(Z)
dz1

, . . . , dft-SNE(Z)
dzN

] using (5)
11: Update Z(t) = Z(t−1) + η∇+ α(Z(t−1) − Z(t−2))

12: Set z(t)i = yi, for i ∈ L
13: end for
14: return: Z(T )

to govern the learning process of t-SNE. To this end, we
formalize the following semi-supervised t-SNE problem,

(P2)

{
minimize

Z
ft-SNE(Z) =

∑
n

∑
m pnmlog pnm

qnm
,

subject to zi = yi, i ∈ L,L = {1, . . . , L}.

As the labeled CSI samples are restricted to be mapped to
their corresponding true UE locations, minimizing the cost
function would probably lead to an UE position map, and the
unknown locations of unlabeled samples can be estimated. As
shown in [19], the gradient of the Kullback-Leibler divergence
between P and Q is given by

dft-SNE(Z)

dzn
= 4

∑
m

(pnm − qnm)(zn − zm)

(1 + ||zn − zm||2)
. (5)

To solve problem P2, we have devised a gradient descent
algorithm as summarized in Algorithm 1. In Algorithm 1,
the learning process is controlled by four parameters, the
perplexity kt, iteration number T , learning rate η and
momentum α. They will be investigated in Section IV-B.
At the end of each iteration, the coordinates of the labeled
samples in the 2D map are forced to be equal to their
position labels, so the learned 2D map would be aligned
in the geographical space. The computation complexity of
one iteration in Algorithm 1 is O(N2) [19], and the overall
complexity is O(TN2).

IV. SIMULATION RESULTS

We now demonstrate the efficacy of the proposed St-SNE
algorithm for CSI-based localization with a subset of CSI
samples with marked positions, investigate the effects of its
learning parameters on the performance, and compare it with
some other typical CSI-based localization methods.

A. Simulated Scenario and Evaluation Metric

We consider a dense urban outdoor multi-cell mmWave
network scenario as depicted in Fig. 2. BSs are below rooftop,
and signals will be reflected or blocked by the walls. A ray-
tracing channel model is used to generate the multi-path
channels. The reflection coefficients are computed based on
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Fig. 2. Distribution of 8 BSs marked by numbers, the traces of UEs during
CSI sample collection represented by dots, and multipath components for
the channel between 6th BS and a UE location via ray-tracing. The mobile
locations are color-mapped for visualization purpose.

TABLE I
BASIC SIMULATION PARAMETERS

Parameter Value Parameter Value

Carrier frequency 28 GHz UE pilot Tx power 23 dBm
System bandwidth 256 MHz UE antenna pattern Omnidirectional
Subcarrier number 128 BS antenna pattern Cosine response

the Fresnel equation and reflections with up to five bounces
are taken into account. The relative permittivities of building
walls are uniformly distributed between 3 and 7. There are
8 mMIMO BSs equipped with ULAs, each has 16 elements
with half-wavelength spacing. The antenna arrays of the BSs
are oriented perpendicular to the building surfaces where the
BSs are mounted. We collect CSI samples from U = 1425
unknown positions among UE traces and the average distance
between neighboring sampled locations is approximately 2 m.
A covariance matrix is estimated over 32 realizations of
the channel vector h over multiple adjacent subcarriers. For
semi-supervised learning, additional L = 75 samples are
generated randomly on the roads. More simulation parameters
are listed in Table I. To measure the performance of CSI-
based localization methods, we use the mean localization error
(MLE) metric, which is MLE = 1

U

∑U
n=1 ∥zL+n − yL+n∥2.

B. Algorithm Parameters

First, with a fixed perplexity kt, we run the St-SNE
algorithm with different learning rate η and momentum α. We
found that a small η will take more iterations for St-SNE to
converge, while a large η cannot find a local minimum for the
cost function. It turns out that η = 1000 is a suitable option
after trial and error. We use a typical momentum α = 0.6 as
in [19] to accelerate the optimization process. Fig. 3 shows that
with such a setting, the algorithm converged after about 1500
iterations. So we set T = 2000 the max iteration number. We
then change the perplexity kt and run the algorithm 10 times.
The MLE vs perplexity curve is shown in Fig. 4. A small
perplexity will lead to the so called Crowding problem [19],
while a large one cannot reveal the manifold details of the
2D map. As shown in Fig. 4, kt = 30 can preserve both the
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Fig. 3. St-SNE iteration process with perplexity kt = 30, learning rate
η = 1000, and momentum α = 0.6.
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Fig. 4. The effects of perplexity kt in St-SNE.

local manifold details and the global structure, and leads to a
minimum MLE of 6.8 m.

C. Performance Comparison

We now investigate the performance of the proposed St-
SNE method for mmWave localization in more detail, and
compare it with kNN [20] and semi-supervised Laplacian
Eigenmap (SLE) [18] method. kNN is widely used in RSSI-
based and CSI-based fingerprinting. Though kNN is quite
simple, recent research shows that it demonstrated the best
performance in localization accuracy among a wide range of
machine learning methods in a complex environment [21].
SLE is shown to be better than kNN in [18]. For kNN, a
small k can obtain good performance [20] and we use k = 3
neighbors which achieves smallest MLE in kNN here.

The localization results with these three methods are
illustrated in Fig. 5, and the Cumulative Distribution Func-
tions (CDF) of localization errors are shown in Fig. 6.
Compare the maps in Fig. 5 to the ground-truth map in
Fig. 2, we see that positions of points far from the labeled
anchors cannot be accurately estimated via kNN and SLE.
It can be seen in Fig. 6 that about 23% of unlabeled points
have a localization error larger than 15 m. Compared to kNN
and SLE, St-SNE greatly reduces the errors of those points,
with only 7% of unlabeled points having a error larger than
15 m, leading to approximate 38% and 35% localization error
reductions.

V. CONCLUSIONS

We have proposed a machine learning method St-SNE
for mmWave multi-cell mobile localization. This method
directly embeds the high-dimensional multi-antenna CSI
samples into the 2D geographical map by governing the
self-learning process of t-SNE with a few position labels.
Through experiments in a simulated urban outdoor mmWave
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Fig. 5. Visualization of the localization performance with different semi-supervised machine learning methods. The points with black circles represent the
labeled UE positions, while other points represent the estimated positions for unlabeled samples. The MLEs are 10.9 m, 10.5 m and 6.8 m for (a) kNN, (b)
SLE and (c) St-SNE respectively.
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Fig. 6. Cumulative Distribution Function (CDF) of localization errors.

network, we have shown that St-SNE is able to perform
accurate large-scale mmWave localization for scenarios with
realistic UE distributions, even with a small portion of
labeled data. St-SNE is scalable and automatic in the sense
that it could be implemented for multi-cell networks, with
spatially sparse labeled samples, and does not require accurate
network synchronization. One drawback of St-SNE is its high
computation complexity compared with kNN and SLE. A
prospective research direction would be to use a graph or
tree method to accelerate its computation of the probability
matrixes.
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