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Abstract—We consider the network-side mobile localization
problem in future 5G and beyond wireless networks with
distributed multi-antenna base stations (BSs). For this applica-
tion, we propose a semi-supervised multi-point channel chart-
ing (SS-MPCC) framework, which consists of (i) collaborative
collection of channel state information (CSI) and other side-
information by distributed BSs; (ii) local CSI feature extraction
and self-learning of a dissimilarity metric, and (iii) global
graph construction and constrained manifold learning. We
show that side-information from routine network operations,
including timestamps, channel qualities, and a small set of
labeled samples, can be exploited to construct a consistent
global graph. The graph is then mapped to a 2D channel chart
using constrained manifold learning for localization purposes.
We evaluate the performance of SS-MPCC in a simulated urban
outdoor scenario with realistic user motion. Our results show
that SS-MPCC achieves a mean localization error of 5.6 m with
only 10% of labeled CSI samples. SS-MPCC does not require
accurate synchronization among multiple BSs and is promising
for future cellular localization.

Index Terms—MIMO CSI, channel charting, semi-supervised
learning, network-side localization

I. INTRODUCTION

Mobile location information acquisition is fundamental in
building smart cites and intelligent transportation systems.
However, how to realize seamless high-precision localization,
especially on the network side, is a challenging problem in
GPS-denied environments. Future 5G and beyond radio access
networks (RANs) will be densely deployed with massive
multiple-input multiple output (mMIMO) Base Stations (BSs)
and high-frequency carrier frequencies in order to provide
ubiquitous ultra-fast and reliable wireless services. In addition
to communication, high-resolution sensing functions are
envisioned to be integrated in such RANs, which opens
up new opportunities for high-precision positioning and
tracking [1]–[4]. Along these lines, 3GPP Rel-16 has specified
positioning support for 5G New Radio (NR) [5]. However,
current network-side NR positioning techniques are based
on triangulation with Angle-of-Arrival (AOA) or trilateration
with Time-Difference-of-Arrival (TDOA) measurements at
multiple BSs, which require rigorous calibration or accurate
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synchronization among network elements. Moreover, the
performance of such methods degrades in complex multi-path
and obstructed environments. Fingerprinting techniques [6]–
[8] with machine learning could be applied for cellular
positioning in such challenging propagation environments.
However, they require a large number of densely-sampled
channel measurements, which scales only poorly to large
areas and renders automation to dynamic environments
challenging. As unlabeled samples are easy to collect, semi-
supervised learning (SSL) methods [9] utilizing both labeled
and unlabeled data are promising for building a large-scale
automatic network-side positioning system. SSL has attracted
increasing attention for indoor positioning applications based
on Received Signal Strength Indicator fingerprints [10], [11].
However, utilizing mMIMO Channel State Information (CSI)
[12], [13] in a networking communication environment for
high-precision and seamless positioning and tracking remains
a challenging problem.

Channel charting (CC), as put forward in [14], relies
on using sporadically collected multi-antenna CSI from
unknown locations in order to learn a chart that can be
used for applications that do not require absolute position
information (e.g., hand-over and user grouping). The principle
of CC is to exploit the fact that high-dimensional CSI
strongly depends on User Equipment (UE) location, which
is low-dimensional. To equip CC with absolute positioning
capabilities, a semisupervised autoencoder utilizing a subset
CSI of samples with known spatial locations, as well as
mobility side information, has been proposed in [15]; this
approach does not require dense measurements. More recently,
an unified CC architecture based on Sammon’s mapping (SM)
and Siamese networks has been presented in [16]; this
approach can be used for both supervised and semisupervised
positioning, and unsupervised relative localization. In [17], CC
is performed for radio signals collected in a real environment
from transmissions of a 64-antenna base station. A triplet
neural network learns the mapping from CSI samples to CC-
coordinates, using time stamp side information to classify
pairs of samples to come from nearby or remote spatial
locations. Unfortunately, in a semi-supervised setting with
challenging non-Line-of-Sight (NLOS) channels and large-
scale network coverage areas, the methods of [15], [16] are
not capable of exploiting unlabeled data samples to improve



Fig. 1. Graph-based semi-supervised multi-point channel charting framework.

location estimates.
Multipoint channel charting (MPCC) [18], [19] is an

unsupervised method that produces trustworthy channel charts
by combining all CSI available at multiple BSs and by
exploiting redundancy in multi-point CSI to combat the
distortion occurring in single-point channel charting results.
In this paper, we propose a semi-supervised multi-point
channel charting (SS-MPCC) framework for large-scale
network-side cellular localization. In SS-MPCC, multiple
distributed multi-antenna BSs collaboratively collect wireless
data from spatio-temporal mobile locations and learn an
aligned channel chart in which historical and real-time mobile
locations can be accurately matched and determined. We
use timestamp information for the unlabeled samples, and
location information of a few labeled samples to increase
the smoothness and trustworthiness of the learned channel
chart. Specifically, we use graph-based constrained manifold
learning methods to calibrate the multi-point channel chart, so
that points in the chart represent the true geographical mobile
location. To demonstrate the effectiveness of SS-MPCC, we
perform simulations in an urban outdoor multi-cell mmWave
network. Using a simulator that models UE movements in a
street grid, we show that a small set of CSI measurements
is sufficient to perform accurate positioning within mobile
networks.

II. SS-MPCC FRAMEWORK

We now introduce the framework for semi-supervised
multi-point channel charting. Our framework is depicted in
Figure 1 and consists of a CSI and side-information collection
procedure, CSI feature extraction and local dissimilarity matrix
construction procedures at distributed units (DUs), as well
as global graph construction and semi-supervised constrained
manifold learning procedures performed at a centralized
unit (CU).

A. CSI and Side-information Collection

We consider a typical 5G cellular network in which UEs
move in the coverage area of multiple mMIMO BSs. During
network operation, the UEs send pilot signals, e.g., Sounding
Reference Signals (SRSs), to BSs for channel estimation. An

estimated mMIMO channel vector at time t on a sub-carrier
with frequency f is modelled as

ht,f =
∑P

l=1
α
(l)
t,fs(φ

(l)
t ) + n, (1)

where P is the number of multi-path components, φ(l)t is the
impinging direction-of-arrival (DOA) of the lth propagation
path, and α

(l)
t,f is a random complex gain for the lth path

which depends on the transmit power, path delays, reflection
coefficients of the contributing scatters, and impacts of radio
chain components. In addition, n is the estimation error and
the vector s(φ) represents the array steering vector (ASV).
For an M -antenna uniform linear array with the plane-wave
approximation, the ASV is

s(φ)=
[
1, ej

2π
λ s sin(φ), . . . , ej(M−1) 2π

λ s sin(φ)
]T
, (2)

where λ is the carrier wavelength and s the antenna spacing.
The channel vector ht,f changes rapidly when the UE

moves in length scales of the wavelength λ. This is due
to changes in the phases of the complex path gains of the
multipath components. In comparison, the DOAs {φ(l)t,f}Ll=1

and the powers of {α(l)
t }Ll=1 change more slowly and smoothly.

To exploit this property, we use the frequency-domain
covariance C = Ef

[
ht,fh

H
t,f

]
as the CSI sample for channel

charting, as it depends on the multipath DOAs and the powers.
In practice, the covariance can be estimated across multiple
coherence bandwidths, e.g., different OFDM sub-carriers.

In the considered system, there are two sets of CSI data,
labeled and unlabeled samples. The first set consists of the
CSI data with corresponding position coordinates which
can be gathered in a dedicated site survey, whereas the
second set is collected from multiple UEs on move. While
collecting the unlabeled CSI samples, the timestamp and
UE identifier are also recorded by the BSs, as in [15], [17].
We assume there are B BSs. The L different labeled CSI
samples at BS b and the corresponding ground-truth location
coordinates are denoted as L(b) = {C(b)

1 , . . . ,C
(b)
L } and

P = [p1, . . . ,pL]. The in total U unlabeled samples and
corresponding timestamps collected at BS b then can be
denoted as U (b) = {C(b)

L+1, . . . ,C
(b)
L+U} and [t1, . . . , tU ]. The

corresponding unknown locations for the unlabeled samples
are denoted by P̂ = [pL+1, . . . ,pL+U ]. It is straightforward
to generalize the model to a situation with unlabeled samples
gathered from multiple mobile UEs. Furthermore, the channel
qualities, e.g., Reference Signal Receiving Powers (RSRPs),
for CSI samples are also collected for data fusion purposes,
as we discuss in Section III.

B. CSI Feature Extraction

We use the power angular profile (PAP) of multipath
components (MPCs) as the CSI feature as in [18]. We use
a Multiple Signal Classification (MUSIC) algorithm [20] to
extract the PAP feature from a covariance CSI sample C.
The powers of multiple components are proportional to the
eigenvalues of the covariance matrix. Noticing this, we first
compute the eigen-decomposition of C and estimate the
number P̂ of prominent MPCs based on the descending



distribution of eigenvalues {λ1, λ2, . . . , λM}. In practice, P̂
must be smaller then the number M of BS antennas, and can
be estimated as the minimum P̂ satisfying λ1+...+λP̂

λ1+...+λM
> ρ,

where ρ is a target power ratio, which is set as 0.8 in our
experiments in Section IV. Then the MUSIC algorithm is
applied to find P̂ DOAs {φ1, . . . , φP̂ } in its pseudo-spectrum.
Finally, the PAP feature is represented as DOA−power pairs
stacked in a vector as f = [λ1, . . . , λP̂ , φ1, . . . , φP̂ ].

C. Local CSI Dissimilarity Learning

Given a set of CSI features {f (b)n }L+Un=1 extracted from the
labeled CSI samples L(b) and unlabeled U (b) at a local BS b,
we need a method to measure their dissimilarity. As shown
in Figure 2, each MPC corresponds to a virtual transmis-
sion (Tx) point [21] in the radio propagation environment.
Spatially close mobile locations will produce similar virtual
Tx points, as they share common scatterers and have similar
MPCs. The coordinates of these virtual Tx points can be
deduced from the PAP features. For a general multipath PAP
feature f = [λ1, . . . , λP̂ , φ1, . . . , φP̂ ], its P̂ coordinates with
respect to the local BS is given by

F(f) = [x1, . . . ,xP̂ ] , (3)

where xi = ρ(λi) [λ
− 1

2
i cosφi, λ

− 1
2

i sinφi]
T is the ith virtual

Tx point, and ρ(·) is a scaling function compensating the
scattering loss. We then transform the PAP features {f (b)n }L+Un=1

to a point cloud, which consists of all the virtual Tx points
with respect to MPCs observed by the BS during CSI sample
collection. As depicted in Figure 2, this point cloud exhibits
clusters, which reflects the distributions of mobile UEs and the
radio scatterers in the environments. The dissimilarity between
two CSI samples depends on whether their PAP features have
virtual points that belong to the same cluster. If two samples
share virtual points in a same cluster, one should estimate their
distance based on these similar virtual points. For this, take
two features f

(b)
m and f

(b)
n from the feature set, assume that

their virtual points are [x1,m, . . . ,xP̂ ,m] and [x1,n, . . . ,xQ̂,n]
of the form (3). Assume that there are a total of C clusters in
the virtual Tx point cloud. After clustering, a virtual Tx point x
would have a cluster label l(x) ∈ {1, . . . , C}. Denote the set
of clusters by Cm,n where both f

(b)
m and f

(b)
n have at least

one virtual point in each of them. If Cm,n is not empty, then
we search a pair of {xi,m,xj,n} from [x1,m, . . . ,xP̂ ,m] and
[x1,n, . . . ,xQ̂,n] , such that maxi,j{|‖xi,m‖2 − ‖xj,n‖2|} is
minimal and l(xi,m) = l(xj,n). Then, the distance ‖xi,m −
xj,n‖2 is used as the dissimilarity metric. If Cm,n is empty,
then the distance ‖x1,m − x1,n‖2 between the points x1,m

and x1,n, which correspond to the strongest MPCs, is used
as the dissimilarity metric.

Using above CSI feature extraction method and the self-
learned dissimilarity metric, the local BS can construct a
matrix D(b) ∈ R(L+U)×(L+U) for the CSI samples L(b) and
U (b), whose element D(b)

i,j captures the dissimilarity between
C

(b)
i and C

(b)
j , for i, j = 1, . . . , L+ U .

The CSI feature extraction and dissimilarity learning
procedures are performed at the DUs which reside at the

Fig. 2. Dissimilarity metric deduced from a virtual Tx point cloud.

network edge close to BSs. Then, the local dissimilarity
matrix of all CSI samples and the corresponding timestamp
and channel quantities are reported to a logical CU for multi-
point channel charting. We thus avoid exchange of the high-
dimensional channel covariances between DUs and CU. The
CU then fuses the data collected from distributed BSs to
form a channel chart via global graph construction and semi-
supervised constrained manifold learning, as discussed in
Section III.

III. GRAPH-BASED SS-MPCC

In [18], manifold learning algorithms, including Sammon’s
Mapping (SM), t-Distributed Stochastic Neighbor Embedding
(t-SNE) and Laplacian Eigenmaps (LE), were considered for
unsupervised MPCC, which can learn the relative position
between unlabeled CSI samples. Here, we choose LE the
baseline dimensional reduction algorithm, and adapt it for
semi-supervised learning. Conventional SM and t-SNE can
also be modified to utilize side information. For example, a
parametric version of SM using Siamese networks has been
considered in [16] for semi-supervised single-point channel
charting. However, performing multi-point channel charting
with such methods is an open research problem.

LE consists of neighborhood graph construction, weight
matrix computation, and low-dimensional mapping procedures.
We will show that incorporation of side information and
merging of local dissimilarity matrices can be realized in the
first two procedures. For application in SS-MPCC, we first
construct a graph G = (V, E), where the sets of vertices V and
edges E represent the CSI samples collected from the L+U
locations, and the corresponding neighborhood relations.

The objective of SS-MPCC is to map the L + U high-
dimensional CSI samples into a low-dimensional space with
a representational channel chart Z = [z1, . . . , zL+U ], so
that zn should be close to the true mobile location pn,
for all n = 1, . . . , L + U . It can be addressed using
constrained manifold learning methods [22], [23], which
is prevalent in machine learning for exploring the underlying
low-dimensional structure of the whole dataset with both
labeled and unlabeled data. As the first L locations are known,
we set

∑L
n=1 ‖zn − pn‖22 as a cost function which should

be minimized. Furthermore, to preserve the neighborhood
relationships of nodes in V deduced from CSI dissimilarities,
we set

∑
m,n wm,n‖zm−zn‖22 as another cost function, where



wm,n is the edge weight for nodes m and n. The overall cost
function is therefore given by

f(Z) =

L∑
n=1

‖zn−pn‖22 +γ

L+U∑
m=1,n=1

wm,n‖zm−zn‖22. (4)

Here, γ ≥ 0 is a tradeoff coefficient between two objectives.
The first term in (4) represents the alignment error for labeled
samples, while the second term preserves local smoothness of
the channel chart. For γ = 0, only the anchor points will be
used; for γ →∞, only CSI is used and anchors are ignored.

A. Global Graph Construction

To construct the global graph G based on the B local
dissimilarity matrices {D(b)}b=1,...,B , and side information
[t1, ..., tU ] and P = [p1, ...,pL], we proceed as:

Step-1: Merge the local dissimilarity matrices to form a
globally consistent one as in [18]. In practice, the signal from
a sampled location pn may not be received by a BS b. In
this case, we set f

(b)
n = ∅, and D(b)

n,m, D(b)
m,n for all m 6= n

to be a large value, and set the channel quality γ(b)n be zero.
The cell-specific dissimilarities are then fused into a global
multi-cell dissimilarity matrix D with elements

Dm,n =

(
B∑
b=1

vb

)−1 B∑
b=1

vbD
b
m,m, (5)

where vb is a reliability weight. We consider using vb =

[min(γ
(b)
n , γ

(b)
m )]ζ , where {γ(b)j } are channel qualities be-

tween locations {pj} and BS b, estimated from RSRP
or other measurements. In addition, The parameter ζ is a
weighting exponent. MPCC is rather robust against changing
the weighting exponents, and we set ζ = 2 in this paper.

Step-2: Find ke nearest neighbors based on the global
multi-cell dissimilarity matrix D for each node m in G. If
node n is in the set of ke nearest neighbors of node m, nodes
m and n are connected in the graph.

Step-3: If the timestamps tm, tn of two nodes m,n ∈ {L+
1, . . . , L+U} with unlabeled CSI samples satisfy |tm−tn| <
Tth, connect nodes m and n in G. Here Tth is the threshold
for timestamps which is related to the movement speeds of
UEs. It will be discussed in Section IV.

Step-4: Based on the neighborhood graph constructed
above, compute the weight matrix W elements {wm,n}L+Um,n=1.
Denote A = {1, . . . , L} and B = {L+ 1, . . . , L+U}. If the
nodes m and n are connected, then the weight wm,n is

wm,n =


αe
−Dm,n
θ2s + (1− α)e

−‖pm−pn‖2
θ2
d , if n,m ∈ A,

αe
−Dm,n
θ2s + (1− α)e

−|tm−tn|
θ2t , if n,m ∈ B,

e
−Dm,n
θ2s , otherwise.

(6)
Here, α is a tradeoff coefficient for mixed edge weights, and
θs, θt and θd are the kernel parameters for CSI dissimilarities,
timestamps and location coordinates respectively. The parame-
ters α, θs, θt, and θd will be investigated in Section IV. Finally,
if the nodes m and n are not connected, set wm,n = 0. When
ke is much smaller than the number of nodes in the graph,
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Fig. 3. Distributions of 6 BSs marked by numbers, the traces of UEs
during CSI sample collection represented by dots. The mobile locations are
color-mapped for visualization purposes.

the resulting graph would typically have a sparse weighted
adjacency matrix W.

It is straightforward to modify (6) to incorporate only
position or timestamp information. For example, if timestamps
are absent, then we just need to delete the second line in (6).

B. Constrained Manifold Learning

Given the graph weight matrix W and the locations
P = [p1, ...,pL] for the labeled samples, we can find a
multi-point channel chart Z, by minimizing the cost function
in (4). Denote Q = [P, P̂] ∈ R(L+U)×2, and set the unknown
locations P̂ to zeros. Then we rewrite f(Z) as

f(Z) =
∑L

n=1
‖zn − pn‖22 + γTr

(
ZTΛZ− ZTWZ

)
= Tr

[
(Z−Q)TJ(Z−Q) + γZTLZ

]
,

where J = diag

1, . . . , 1︸ ︷︷ ︸
L

, 0, , . . . , 0︸ ︷︷ ︸
U

, Λ is the degree

matrix of G with the nth diagonal element Λn =
∑L+U
m=1 wn,m,

and L = Λ−W is the graph Laplacian of G.
As in [22], by setting the derivative of objective function

to be zero, the aligned channel chart can be estimated as

Z = (γL + J)−1J Q. (7)

In (7), larger values of γ will increase the smoothness of the
channel chart Z, while γ should be close to 0 to map labeled
samples to its ground-true positions. A suitable value of γ
can be found experimentally as will be shown in IV.

IV. SIMULATION RESULTS

We now demonstrate the efficacy of the proposed graph-
based SS-MPCC for CSI-based localization with timestamps
and a subset of CSI samples with marked positions.

A. Simulated Scenario and Evaluation Metrics

We consider an urban outdoor multi-cell mmWave network
scenario as depicted in Figure 3. BSs are below rooftop, and
signals will be reflected or blocked by the walls. A ray-tracing
channel model is used to generate the multi-path channels.
There are B = 6 mMIMO BSs equipped with ULAs, each
has M = 16 elements. The antenna arrays of the BSs are
oriented perpendicular to the building surfaces where the BSs
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Fig. 4. Effects of parameters on localization performance of graph-based SS-MPCC with both timestamp and location information; The default parameters
are ke = 16, γ = L/3000, α = 0.99. Tth = 2.4, θs = 5, θd = 5, θt = 2 and L = 100.

are mounted. UEs transmit reference signals with a fixed
power of 23 dBm. The carrier frequency is 28 GHz, system
bandwidth is 256 MHz with 128 OFDM subcarriers.

In the simulated scenario, UEs move along the roads with
a average speed of 5 meters per second. We collect U = 3000
CSI samples from UE traces and the average distance between
neighboring sampled locations is approximately 2 m, which is
much larger the carrier’s wavelength. The covariance matrix
is estimated over 32 realizations of the channel vector h over
multiple adjacent subcarriers. The channel quality is estimated
as E{‖h‖22}. For semi-supervised learning, additional L
samples are generated randomly on the roads. To measure
the performance of CSI-based localization methods, we use
the following metrics:

1) Mean localization error: For semisupervised localiza-
tion, a natural way for measuring performance is the mean
localization error (MLE) for unlabeled samples:

MLE =
1

U

U∑
n=1

‖zL+n − pL+n‖2. (8)

2) Kruskal’s stress: In addition to the MLE, we use
Kruskal’s stress (KS) to measure how well the learned channel
chart represents the true locations globally:

KS =

√∑
n,m(δn,m − βdn,m)2∑

n,m δ
2
n,m

. (9)

Here, δn,m = ‖pn − pm‖, dn,m = ‖zn − zm‖, and β =∑
n,m δn,mdn,m/

∑
n,m δ

2
n,m. KS is in the range [0, 1] and

smaller values indicate better preservation of global geometry.
3) Trustworthiness and continuity: We use two standard

metrics that characterize neighborhood preserving perfor-
mance: trustworthiness (TW) and continuity (CT) [14]–[16].
The TW measures whether the mapping of high-dimensional
samples to the low-dimensional space introduces false neigh-
bors; the CT measures whether similar samples in high-
dimensional space remain similar in low-dimensional space.
TW and CT have values in [0, 1] and larger values imply better
preservation of neighborhood relationship. When evaluating
TW and CT, a number K of neighbors should be specified.

B. Virtual Tx Point Cloud

Figure 5 depicts the virtual Tx point cloud extracted by
BS 1. These points are related to 536 mobile locations inside
the coverage area of BS 1, and exhibit clear clusters when
compressed to a confined area via a nonlinear scaling function.

C. Investigations of Algorithm Parameters

There are seven parameters: the alignment-smoothness
tradeoff coefficient γ, mixed edge weight tradeoff coefficient
α, number of neighbors ke, timestamp threshold Tth, and
the heat kernel parameters θs,θd and θt. We first carried
out experiments to study the impact of parameters ke on
the localization performance, as it largely determines the
structure of the graph. As shown in Figure 4a, when other
parameters are fixed, there is an optimal ke. A very small ke
cannot well characterize the neighborhood relations among
nodes. Here we set ke = 16, which leads to the lowest MLE
as in Figure 4a. Tth plays a similar role as ke, we found
that in our simulation scenario, Tth = 2.4s is a good option
as depicted in Figure 4d. Small kernel parameters will de-
emphasis neighbor connections with larger dissimilarities,
while large kernel parameters cannot find the fine-grained
local structures. However, when the neighborhood graph is
set, their impacts on MLE performance is limited, we set
θs = θd = 5 and θt = 2 in the following simulations. The
parameter γ has a profound impact on the learned channel
chart as can be seen from Figure 4b. Values of γ larger than
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Fig. 5. Point clouds of virtual Tx points extracted by BS 1, a) without
scattering loss compensation; b) with scattering loss compensation and
DBSCAN clustering.
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Fig. 6. Visualization of the localization performance with different numbers of labeled CSI samples, number of unlabeled samples is U = 3000. The MLEs
are 12.6, 6.8 and 5.6 m for L =50, 150 and 300 labeled samples. The positions for labeled samples are marked by circles.
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Fig. 7. Visualization of the channel charts learned by (a) unsupervised LE, (b) LE with timestamps and (c) LE with L=300 labeled samples and no
timestamp. The parameters used for b) are ke = 16, γ = 0.1, α = 0.99. Tth = 2.4, θs = 5, θt = 2. The parameters used for c) are ke = 16, γ = 0.1,
α = 0.01. θs = 5, θd = 10,

one leads to a shrunken chart as it helps to minimize the
Graph Laplacian. It turns out γ = L

U is a good choice in our
simulations; for the mixed edge weight tradeoff coefficient α,
we found that 1− L/U worked well.

D. Performance Comparison

We now investigate the performance of the proposed SS-
MPCC method for network-side localization. We compare SS-
MPCC to unsupervised MPCC [18], and kNN method, which
is widely used in CSI-based fingerprinting [6]. We will show
that SS-MPCC is applicable to a variety of scenarios. It can
work with different types and amounts of side-information.

First, as demonstrated by Figure 6, the proposed graph-
based SS-MPCC method is capable of unveiling mobile de-
vices’ locations in the considered grid-like urban environment.
With only 50

3000 = 1.67% of labeled CSI samples, the network
topology is revealed, and the UEs can be located with a MLE
as 12.6 m. When this ratio increases to 10 %, a MLE of
5.6 m is achieved. Note that such a positioning accuracy
does not assume tight synchronization and/or high-precision
calibration among multiple BSs, what they need to know
is that a CSI sample is transmitted from a UE during the
same time interval. This result can be understood by the fact
that the timestamps and multi-point data fusion in SS-MPCC
help in preserving the neighborhood relationships of the CSI
data on each user trace and/or across multiple user traces,
which is beneficial in learning the manifold of unlabeled CSI
data. As a reward, a small set of labeled data is adequate for
network-side positioning and tracking.

To gain more understanding on the efficacy and working
mechanisms of SS-MPCC, we investigate its performance with
only timestamps, and with only marked positions. For the sake
of completeness, results of conventional unsupervised MPCC
are also given, as illustrated in Figure 7 and summarized
in Table I. The channel chart in Figure 7a generated by
unsupervised MPCC is capable of preserving most of the
local manifold structures, but with a twisted global structure,
and interruptions at some points. By utilizing the timestamps,
the chart in Figure 7b is smoother and the traces of UEs are
revealed, with TW = 0.9951 and CT = 0.9943 for K = 50.
With only partial position information, by modifying (6) and
using proper parameters, an aligned channel chart is shown
as in Figure 7c. Compared to Figure 7b, the TW and CT
scores are smaller, but absolute positioning with a MLE =
16.7 m is enabled with 10% labeled CSI samples.

Finally, we compare SS-MPCC to kNN. kNN is only

TABLE I
PERFORMANCE COMPARISON

kNN MPCC SS-MPCC

Timestamps × × X × X
L 300 × × 300 300

MLE [m] 18.8 N/A N/A 16.7 5.6

KS .2547 .3593 .1938 .2540 .0768

TW K = 50 .9699 .9629 .9951 .9819 .9950
K = 100 .9689 .9529 .9898 .9814 .9956

CT K = 50 .9641 .9711 .9943 .9735 .9968
K = 100 .9591 .9645 .9912 .9719 .9973
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Fig. 8. Cumulative Distribution Function (CDF) of localization errors for
different number (L) of labeled CSI samples.

applicable when there are labeled samples, it estimates the
position of an unlabeled sample by computing the barycenter
of k most similar labeled ones, and neglects the timestamp
information. Here we set k = 5 for kNN, which yields
optimal MLE performance. As shown in Table I, SS-MPCC
performs much better than kNN for all metrics, especially
when timestamps of unlabeled samples are exploited. From the
CDFs of MLEs in Figure 8, we see that a portion of locations
have large localization errors for kNN, which correspond to
the positions without nearby labeled anchor points, especially
at the network edges. Furthermore, as is shown in Figure 8,
when the number of labeled samples drops from 300 to 150
by half, the performance of MPCC is only slightly affected,
with mean MLE increased from 5.6 m to 6.8 m, while the
MLE of kNN is increased from 18.8 m to 25.1 m.

V. CONCLUSIONS

We have shown that side-information, such as timestamps
and a set of labeled samples, can be incorporated into a
semi-supervised multi-point channel charting framework to
support large-scale network-side localization and tracking in a
distributed manner. Moreover, we have demonstrated that the
multi-BS CSI feature fusion and incorporation of timestamps
to increase manifold smoothness can be implemented in global
graph construction based on graph Laplacian. Finally, through
experiments in a simulated urban outdoor scenario, we have
shown that SS-MPCC is able to perform large-scale network-
side positioning for scenarios with realistic UE motion, even
with a very small portion of labeled data. The proposed
framework is scalable and automatic in the sense that it could
be implemented for varying number of BSs, with spatially
sparse labeled samples, and does not require accurate network
synchronization. There are many opportunities for extensions
of this work, including out-of-sample mapping to locate
new samples on the channel chart for real-time positioning
applications, and filtering algorithms for multi-target tracking.
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