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Abstract—We consider spectrum sensing in a wideband cogni-
tive radio system where 1-bit analog-to-digital converters (ADCs)
are adopted at the radio frequency (RF) sensors. We focus on
a practical scenario where multiple narrow-band radio systems
coexist in the considered wide spectrum range and the RF sensor
has no prior knowledge about those ambient radio systems. First,
we use Van Vleck’s arcsine law to analyze the impact of 1-bit
sampling on performance of covariance matrix reconstruction.
Second, we propose a novel 1-bit wideband spectrum sensing
algorithm based on the subspace technique. We show that
the proposed method exhibits near-zero false alarm (FA) while
achieves the similar probability of detection (PD) performance
as compared to conventional FFT-based and correlation-based
wideband sensing methods.

Index Terms—spectrum sensing, one-bit ADC, sub-space
method, false alarm, probability of detection

I. INTRODUCTION

Spectrum sensing [1] for the radio frequency (RF) envi-
ronment is a fundamental problem in a cognitive radio (CR)
system. However, how to learn the spectrum occupancy state
for a wideband system in a fast and energy-efficient way is
still a challenging problem [2], especially in a cognitive radio
sensor network (CRSN) [3] where low hardware costs and
low power consumption are required. The main objective of
wideband spectrum sensing is to simultaneously detect the
occupation states of individual slices in a wide frequency band
which could be several GHz. Wideband spectrum sensors with
high time-resolutions are expensive and power-hungry due
to the use of high-speed analog-to-digital converters (ADC),
and large amounts of computing & caching resources for
performing real-time signal processing.

To deploy a wideband spectrum sensor network at a large
scale for monitoring the RF spectrum states in a geographic
area, one should use low-cost and low-power-consumption RF
sensors. ADCs play a central role in digital sensing and com-
munication systems. They account for a considerable hardware
cost and energy consumption for an RF sensor or receiver.
The circuit complexity and the power consumption of a ADC
grows exponentially O(2b) with the sampling resolution in the
form of the number of bits b. Towards low-cost wideband RF
sensing, a promising option is to switch from Nyquist high-
resolution data sampling to data acquisition with coarse ADC
resolutions. A radical approach is to adopt 1-bit ADCs which
acquire only the signs of analog receive signals and discard
the amplitude information.

A. Relevant Art

Low-resolution ADCs, especially 1-bit ADCs have been
considered for massive MIMO communication systems [4],

[5], low-cost radar systems [6], [7], and direction of ar-
rival (DoA) estimation [8], [9]. It is known that performances
of signal estimation and detection using 1-bit ADCs incurs
only a small loss as compared to high-resolution ADCs
in the low-SNR regime. In fact, when SNR is low, high-
resolution ADCs are unnecessary as the sampled data contain
few information about the signal which is overwhelmed by the
noise. The theories behind using 1-bit ADCs for various signal
estimation and detection applications date back to the pioneer-
ing work by Van Vleck in analyzing the power spectrum of
amplitude-clipped Gaussian noise, and the famous Bussgang’s
theorem for the cross-correlation of a Gaussian signal and
its nonlinear distorted version. The problem of narrow-band
frequency estimation from 1-bit quantized samples was inves-
tigated in [10], where the the effects of 1-bit sampling and
quantization on frequency estimation for a single-tone signal
are studied. Wideband spectrum sensing with 1-bit ADCs was
considered in [11], where the power spectral density (PSD) is
estimated based on the 1-bit sampled data via Discrete Fourier
transform (DFT).

B. Contributions and Outline

We consider using one-bit ADCs for blind wideband spec-
trum sensing. Based on the classical arcsine law for 1-bit
quantized signals, we propose a low-complexity yet efficient
spectrum detection algorithm via a modified Multiple Signal
Classification (MUSIC) method. Compared to existing meth-
ods, the proposed one shows superior detection performances.
In Section II, we present the system framework, signal mod-
el, and formulate the problem. In Section III, we use Van
Vleck’s arcsine law to analyze the effects of 1-bit quantization.
In Section IV, we detail the proposed subspace-based 1-bit
sensing method. In Section V, we demonstrate the efficacy of
the proposed 1-bit wideband sensing method via numerical
simulation. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a spectrum monitoring system where RF sen-
sors with high-speed 1-bit ADCs are adopted to monitor a wide
RF band. The interested RF band is (fc − Fs/2, fc + Fs/2),
with fc the frequency of the RF oscillator, and Fs the ADC
sampling rate. We assume that the ambient RF systems operate
over a GHz-wide band which can be divided into N sub-
bands (slices). The N sub-bands are assumed to have a same
bandwidth B. The values of N and B are deliberately chosen
so that Fs = NB. Each primary user (PU) in the systems
operates on one sub-band and it is assumed that there are
M (M < N ) active PUs at a time.
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Fig. 1. System architecture for 1-bit wideband spectrum sensing where a
homodyne RF receiver with a pair of 1-bit ADCs are adopted.

A. Hardware Architecture

The considered 1-bit RF sensor hardware architecture is
depicted as in Fig. 1, where a homodyne RF receiver with
a pair of 1-bit ADCs are adopted to acquire both the highly
clipped versions of the in-phase (I) and quadrature (Q) signals.
In practice, 1-bit ADCs can be implemented using a single
comparator [12], which has an ultra-low driving power. It
should be stressed that the homodyne RF architecture has
reduced circuit complexity and power consumption, and is
naturally suited to 1-bit sampling as no automatic gain con-
trol (AGC) is required for the RF amplifier. At the baseband
signal processing part, a high-speed buffer is used to store the
sampled data, i.e., signs of the realtime I/Q signals. Due to
the extreme quantization, the size of the buffer can also be
greatly reduced. The bits in the buffer will then be segmented
into snapshots and forwarded to the baseband signal processor
where spectrum sensing algorithms are implemented. Due to
the simplicity in 1-bit data operation, the signal processing
complexity would be much lower than that for conventional
high-resolution sampled data.

B. Signal Model

The interested spectrum band of width NB is intentionally
divided into N slices so that the frequency-domain resolution
achieved by a wideband spectrum sensing method is lower
than B. In the time domain, this is accomplished by segment-
ing the 1-bit clipped signal into non-overlapped snapshots with
length of exactly N samples. We assume that the operational
baud rates for the ambient RF systems is smaller or equal to B.
Assuming Fs � B, the PU signals will be narrow-band and
can be approximately treated as a complex sinusoid [13] from
the wideband sensing perspective. Due to the ultra high 1-bit
sampling rate, the M narrow-band signals can be represented
by complex frequency tones with different center frequencies
{fm}Mm=1. As a result, the continuous-time received signals at
the RF sensor before sampling can be written as

y(t) =
∑M

m=1
αm(t)e j2πf ′m(t−τm) + w(t), (1)

where f ′m = fm − fc is the baseband frequency for the m-th
narrow-band signal, j =

√
−1, αm(t) represents the complex

envelope which depends on the channel coefficient and the PU
signalling mechanism, and τm represents the random relative
delay within the observation window of length T = N/Fs,
and w(t) ∼ CN (0, σ2

w) is the circularly symmetric complex

fc

fm

B

NB

Fig. 2. Slicing for a wideband spectrum range.

Gaussian (CSCG) noise with variance σ2
w and zero mean.

The coefficients {αm(t)}Mm=1 for M signals are assumed
to be independent identically distributed (i.i.d) as the radio
propagation channels between the RF sensor and the M PUs
are independent. Throughout the analysis, we assume that the
RF sensor has no prior knowledge about the structure of the
signals, and the coefficients {αm(t)}Mm=1 can be treated as
random variables drawn from CN (0, σ2

s) with zero mean and
power σ2

s . Based on (1), the unquantized discrete signals with
sampling rate Fs is

y[n] =
∑M

m=1
αm [n] e j2πf ′m( n

Fs
−τm) + w [n] , (2)

with αm [n] = αm (n/Fs) and w [n] = w (n/Fs), and n ∈ Z.
The 1-bit quantized signal is then given by

q[n] = Q(y[n]), (3)

where Q(·) represent the 1-bit quantization function for a
complex signal, and it is given by

Q(z) =
1√
2

(sign(<{z}) + j sign(={z})) , (4)

with <{z} and ={z} the real part and the imaginary part of a
complex number z, respectively. Clearly, the value of q[n] is
from a QPSK constellation { 1+j√

2
, 1−j√

2
, −1+j√

2
, −1−j√

2
}. Stacking

N samples in one snapshot, we have an unquantized received
vector

y = s + w = [y[0], y[1], · · · , y[N − 1]]
T
, (5)

with s the signal vector, w the noise vector. Then, the 1-bit
quantized vector is

q = Q(y) = [q[0], q[1], · · · , q[N − 1]]
T
. (6)

The unquantized y is gaussian with y ∼ CN (0,Ryy), where
Ryy = E{yyH} is the covariance matrix (also the auto-
correlation matrix as y has zero means). Furthermore, let us
define a frequency-domain steering vector as

v(f) =
[
1, e

j2π
Fs
f , e

j4π
Fs
f , · · · , e

j2(N−1)π
Fs

f
]T
, (7)

then the unquantized signal vector s can be rewritten as

s =
∑M

m=1
βmv(f ′m), (8)

where we have define βm = αm[n]e−j2πFmτm and assume
αm[n] remains the same during the sensing window (i.e., the
index n is dropped in the expression).



C. Problem Formulation

The M narrow-band frequencies {fm}Mm=1 are assumed
to lie in exactly M sub-bands, i.e., M out of N slices
of the interested wideband spectrum are occupied by M
PU signals, as depicted in Fig. 2. The objective of the RF
sensor is to provide an N -bit digital word representing the
states of the spectrum slices. Each bit representing whether a
respective slices is occupied or not. For this, we define 2N
binary hypotheses {H0,n}Nn=1 and {H1,n}Nn=1, in which H0,n

denotes the idle state of the n-th slice and H1,n represents the
active state. A detection algorithm can be adopted to classify
the observations into H0 or H1 for N slices. For each slice,
a test statistics χn is formulated based on the 1-bit sampled
data, and a test decision is given as follows:{

Choose H0,n, if χn < θn,
Choose H1,n, if χn > θn,

for n ∈ {1, 2, . . . , N}, (9)

where θn is a decision threshold. The performance of a de-
tection algorithm is evaluated by the detection probability Pd
and the false alarm probability Pf . The detection probability
is the probability of detecting a active spectrum slice when it
is truly occupied by a signal, while the false alarm probability
is the probability that the detector incorrectly decides that the
spectrum slice as active when it is actually not.

III. THE EFFECTS OF 1-BIT QUANTIZATION

With the signal model described in Section II-B, the vari-
ance of [y]i, which equals to the i-th diagonal entry of Ryy,
is given by

ρ = [Ryy]ii = E{[y]i[y]∗i } =
∑M

m=1
|βm|2 + σ2

w. (10)

The correlation between the [y]i and [y]j is

ρij = [Ryy]ij = E{[y]i[y]∗j}

= E
{[∑

m
βme

j2π(i−1)f′m
Fs

] [∑
m
β∗me

− j2π(j−1)f′m
Fs

]}
=
∑

m
|βm|2e

j2π(i−j)f′m
Fs .

For the one-bit quantized measurement, according to the signal
model, the entities of q as in (6) has zero mean and unit
variance. As a consequence, for its covariance matrix Rqq =
E{qqH}, we have [Rqq]ii = 1 for the diagonal elements.

Although the signal is highly distorted after the nonlinear
1-bit sampling, the classical Bussgang theorem [4], [14] re-
veals that there is a linear relationship between the covari-
ance matrices Ryy and Rqq. Bussgang theory is a powerful
tool for the analysis of Gaussian signals passing through
nonlinear devices (e.g., the 1-bit ADC). Specifically, when
y ∼ CN (0,Ryy) holds, (6) can be linearized as

q = Q(y) = By + e, (11)

where e is the non-Gaussian 1-bit distortion plus noise term,
and is uncorrelated with y. The linearization matrix B is given

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 3. sin(π
2
x) can be well approximated by linear function π

2
x when x

is small, e.g., for x < 1
2

.

by B =
√

2
πΣ
− 1

2
y with Σy = diag(Ryy) [5]. Furthermore, ac-

cording to Vleck’s arcsine law [15], [16] for 1-bit quantization,
we have

Rqq =
2

π

[
arcsin

(
Σ
− 1

2
y RyyΣ

− 1
2

y

)]
, (12)

where [arcsin(A)]ij=arcsin(<{[A]ij})+ j arcsin(={[A]ij}),
i.e., arcsin(·) is element-wise. The covariance matrix for the
non-Gaussian error term e is then

Ree =
2

π

[
arcsin

(
Σ
− 1

2
y RyyΣ

− 1
2

y

)]
−BRyyB

H. (13)

According to the signal model presented in II-B, we have
Σy = ρI. Let us define the normalized covariance matrix for
y as R̄yy = 1

ρRyy, then one can reconstruct R̄yy using

R̄yy = sin
(π

2
Rqq

)
, (14)

where [sin(A)]ij = sin(<{[A]ij})+j sin(={[A]ij}). Noticing
that |[Rqq]ij | < 1 for i 6= j, |[Rqq]ij | = 1 for i = j,
and sin(πx/2) can be well approximated by a linear function
πx/2 (as shown in Fig. 3), we can approximate R̄yy utilizing

R̄yy
.
=
π

2
Rqq +

(
1− π

2

)
I , R̄app

yy , (15)

where the term
(
1− π

2

)
I is used to correct the approximation

error for the diagonal elements. When the RF sensor operator
in the low SNR regime, the off-diagonal elements of Rqq will
be much smaller than 1, and the accuracy of (15) is high. In the
extreme, when SNR approaches zero, the 1-bit sampled data
will be independently and uniformly drawn from the QPSK
constellation, and off-diagonal elements of Rqq become zeros.

The equation (15) implies that for the an eigenvector v of
Ryy with Ryyv = λv, we have

π

2
Rqqv

.
=

(
λ

p
− 1 +

π

2

)
v, (16)

which implies that the Rqq and Ryy have nearly identical
eigenvectors, and hence, identical signal and noise spaces,
when SNR is low.

IV. SUBSPACE-BASED 1-BIT WIDEBAND SPECTRUM
SENSING ALGORITHM

To design a wideband spectrum sensing algorithm suitable
for low-cost RF sensors, one should consider the computation



complexity, the sensing time, and the detection performance
at very low FA probabilities. Here, noticing that the 1-bit
covariance matrix Rqq has a similar signal space as with
the unquantized one Ryy, we present an efficient wideband
spectrum sensing algorithm based on subspace techniques.
Subspace methods are a class of high-resolution parameter
estimation method based on the orthogonality between the
signal and noise spaces. Two typical subspace methods are
the classical MUltiple SIgnal Classification (MUSIC) [17]
method and the estimation of signal parameters via rotational
invariance techniques (ESPRIT).

The MUSIC algorithm is widely used for DoA and fre-
quency spectrum estimation. The input of the algorithm is the
covariance matrix of the data. We consider the unquantized
signal vector y = s + w as in (5), where the noise term w
is assumed to be Gaussian and uncorrelated with the signal
part s. Assuming that the number of samples N is larger
than the number of frequency components M , the unquantized
covariance matrix can be rewritten as

Ryy = E
{

(s + w) (s + w)
H
}

=
∑M

m=1
E
[
|βm|2

]
v(f ′m)vH(f ′m) + E

{
wwH

}
= A∆AH + σ2

wI , S + σ2
wI,

(17)

where A = [v(f ′1), · · · , v(f ′M )] is a matrix of the frequency
steering vectors , and ∆ = diag

(
E[|β1|2], . . . ,E[|βM|2]

)
. The

signal covariance matrix S = A∆AH is a N × N matrix
with a rank M ; it therefore has M eigenvectors with nonzero
eigenvalues in the signal subspace, and N−M eigenvectors
corresponding to the zero eigenvalue. If u is such an eigen-
vector in the null space, we have A∆AHu = 0, which
means uHA∆AHu = 0 and AHu = 0. This implies that
all N −M eigenvectors with zero eigenvalue are orthogonal
to all the M steering vectors in A. Let S = UΛUH be the
eigen-decomposition of S. For a eigenvector v in U, we have
Sv = λv and Ryyv = (S+σ2

wI)v = (λ+σ2
w)v. This implies

that v is also an eigenvector of Ryy with eigenvalue λ+ σ2
w.

We thus have the eigen-decomposition Ryy = U(Λ+σ2
wI)UH

of the unquantized covariance matrix. Based on this eigen-
decomposition, we can partition the eigenvector matrix U into
two parts as U = [Us Un], where Us of size N ×M defines
the signal subspace, while Un of size N × (N −M) defines
the noise subspace.

The core idea of MUSIC is to estimate signal parameters
using the so-called pseudo-spectrum

Ppseu(f) =
1

vH(f)UnUH
n v(f)

=
1

‖UH
n v(f)‖22

. (18)

If f equals one of the carrier frequencies of the spectrum
components, the denominator is small, and there will be M
largest peaks in the pseudo-spectrum. The major limitation of
MUSIC is that the number of signal components M should be
known as a priori. However, in wideband spectrum sensing, the
number of spectrum components M is usually unknown. For
this, we utilize the Minimum Description Length (MDL) [18]
estimator for determining the number of spectrum components.

Algorithm 1 subspace-based 1-bit wideband spectrum sensing
1: Received 1-bit quantized signal vectors {q1,q2, . . . ,qL}
2: Estimate the 1-bit quantized covariance matrix by com-

puting R̂qq ← 1
L

∑L
l=1 qlq

H
l

3: Estimate the unquantized normalized covariance matrix
via R̂yy ← π

2 R̂qq +
(
1− π

2

)
I

4: Perform the eigen-decomposition ÛΛ̂ÛH for R̂yy, where
Û = [u1,u2, . . . ,uN ], and Λ̂ = diag{λ1, λ2, . . . , λN}
with λi ≥ λj for i < j

5: Estimate the number of spectrum components using the
MDL estimator, M̂ ← arg minc MDL(c, Λ̂)

6: Partition Û into [Us Un] with Us = [u1, . . . ,uM̂ ]
7: Compute the pseudo-spectrum Ppseu(f) = 1

‖UH
n v(f)‖22

for
f ∈ {f1, f2, . . . , fN} which are the center frequencies
of the N spectrum slices, and we get a pseudo-spectrum
power vector ps = [Ppseu(f1),Ppseu(f2), . . . ,Ppseu(fN )]

8: Find the N − M̂ smallest elements in ps, estimate the
pseudo-spectrum noise floor as Pnoise, which is the mean
of the N − M̂ smallest elements in ps

9: If ps(n) > 10
γ
10 Pnoise, mark the n-th slice as occupied

The MDL is an important concept in information theory, it
states that one should prefer the model that yields the shortest
description of the data when the complexity of the model is
considered. Following [18], where MDL is used for estimate
the number of signals impinging on a sensor array, the MDL
estimator is given by

M̄ = arg min
c∈{0,...,N−1}

MDL(c, Λ̂)

= arg min
c∈{0,...,N−1}

−L log

 ∏N
i=c+1 λi(

1
N−c

∑N
i=c+1 λi

)N−c


+
1

2
(c(2N − c) + 1) logL

 ,

where Λ̂ = diag{λ1, λ2, . . . , λN} comprises the eigenvalues
of the empirical covariance matrix, with λi ≥ λj for i < j.

To decide whether a spectrum slice is occupied or not,
the test statistics χn in (9) for the n-th slice is chosen to
be χn = Ppseu(fn) where fn is the center frequency of
the n-th slice. The value of χn at a given slice is com-
pared to a threshold. If the value exceeds the threshold,
this slice will be marked as occupied. We define a pseudo-
spectrum noise floor as the mean of the N − M̂ small-
est elements in ps = [Ppseu(f1),Ppseu(f2), . . . ,Ppseu(fN )],
where {f1, f2, . . . , fN} are the center frequencies of the N
spectrum slices. The threshold is defined to be γ dB above
the pseudo-spectrum noise floor. Algorithm 1 summarizes the
proposed 1-bit wideband spectrum sensing procedure. Notice
that, in practice, the 1-bit covariance matrix is estimated based
on multiple observation snapshots for q, and is given by
R̂qq = 1

L

∑L
i=1 qiq

H
i , where L stands for the number of

snapshots. In total, NL samples are needed for the estimation.



V. PERFORMANCE EVALUATION

We evaluate the proposed 1-bit wideband spectrum sensing
method by means of numerical simulations. In the simulation,
we consider a CR system with a band of 640 MHz. The
sampling rate Fs is set to be 640 MHz, so the 1-bit ADC
produces a sample every 1.5625 ns. The whole band is divided
into N = 64 slices with a bandwidth of 10 MHz, M slices are
occupied by M RF narrow-band signals. We assume that one
fourth of the slices are occupied, so M = 16 in our simulation
setting. The carrier frequency of each signal is assumed to lie
at the center of a slice. Each narrow-band signal is passed
over flat multi-path fading channel. Narrow-band channel
coefficients for the M signals are independent. We average all
numerical simulations over 103 random channel realizations.
We compare the performance of the proposed method with
two other typical wideband spectrum sensing method, i.e.,
FFT-based method and correlation-based method. The SNR
here is defined as SNR , σ2

s /σ
2
w. We will investigate

the detection probability and false alarm performances under
different SNRs, and the effects of the number of snapshots L
on those performances. For DFT-based wideband spectrum
sensing, the power spectrum is given by

Pdft(fn) = E

{∣∣∣∣∑N−1

k=0
q[k]e j2πnk/N

∣∣∣∣2
}
,

where the expectation is taken over different snapshots. For
correlation-based wideband spectrum sensing, the power spec-
trum is given by Pcorr(fn) = E

{∣∣qHv(fn)
∣∣2} .

In Fig. 4, we show examples for the estimated subspace-
based pseudo-spectrum power, the DFT-based, and the
correlation-based spectrum power, for fn ∈ {f1, f2, . . . , fN},
with the setting of SNR = 0 dB, and 1-bit sampled data
of L = 32 snapshots. The performance of a wideband
spectrum sensing algorithm highly depends on its capabilities
to distinguish the noise floor and the signal power in each sub-
band. It is shown in Fig. 4 that the subspace-based pseudo-
spectrum has a more distinguishable floor compared to the
other two. Given the estimated power spectrum, the Pd and
Pf performances depends highly on the chosen threshold.
When the threshold decreases, more occupied slices will be
detected (Pd would increase), while more unoccupied slices
would also be classified as occupied (Pf would also increase).
As a result, there is a tradeoff between detection probability
and false alarm when choosing the threshold. In following
evaluations, we select the threshold to be γ = 3 dB above the
estimated noise floor.

A. Time Resolution versus Detection Performances

The time resolution of the RF sensing is N × L× F−1s , it
drops as the number of snapshots increases as more time is
needed to gather more data samples. Fig. 5 shows the sim-
ulation results for the detection and false alarm probabilities
as a function of the number of snapshots. It is shown that
the detection probability increases while the false alarm rate
decreases as more snapshots of data are captures, for various
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Fig. 4. An example of spectrum power estimation based on 1-bit sampled
data, the SNR is set to 0 dB. The number of observation snapshots is L = 32,
so there are totally N ×L = 2048 1-bit samples. The values of Ppseu(fn),
Pdft(fn), Pcorr(fn) have been normalized to lie between 0 and 1.
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(a) Detection probability versus number of observation snapshots
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(b) False alarm probability versus number of observation snapshots

Fig. 5. Effects of the number of observation snapshots on the performances
of the proposed 1-bit wideband spectrum sensing.

SNR conditions. When SNR is 0, the proposed method can
achieve perfect sensing performances with L = 32 snapshots,
which correspond to a time-resolution of 3.2 µs. It is also
interesting to see that, when SNR is high, more snapshots of
data are needed to attain a zero false alarm rate. The reason
is that in high SNR regime, the distortion resulting from
1-bit sampling dominates the signal-to-noise plus distortion
radio (SNDR), and more samples are needed to average out
the distortion in estimating the empirical covariance matrix.
This implies that 1-bit wideband spectrum sensing has a
preferred operational SNR range.
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(b) False alarm probability performance under different SNR conditions.

Fig. 6. Effects of SNR on the 1-bit wideband spectrum sensing via the
subspace-based, DFT-based and correlation-based methods. Totally L = 64
snapshots are adopted. The performances of the corresponding methods with
infinite-resolution ADCs are also given for comparison.

B. Performance Comparison under Different SNR Conditions

Fig. 6 shows the effects of SNR on the detection per-
formances. As comparisons, the results for DFT-based and
correlation-based sensing methods, and the results for all three
methods with infinite-resolution ADCs are also given. First,
the results indicate that the sensing performances with 1-
bit ADCs are comparable to the performances with infinite-
resolution ADCs, for all three methods. This is particularly
true for the proposed one. In the setting of L = 64, the
detection probabilities approach 100% when SNR > 0. On
the one hand, the detection probability performance of the
proposed method is lower than that of DFT-based and high-
er than correlation-based. On the other hand, the proposed
method achieves almost zero false alarm, and is superior
compared to the other two. It is worth mentioning that as SNR
increases, false alarm rates get higher, especially for DFT-
based and correlation-based methods. This is due to the power
leakage problem. As signal powers increases, the adjacent
vacant spectrum slices would suffer from power leakages from
the occupied slices. This problem is severer for the other two
methods as compared to the subspace-based method.

VI. CONCLUSION

We have proposed a subspace-based 1-bit wideband spec-
trum sensing method, it exhibits ultra-low power consump-
tion, low memory and computation demands, and is suitable
for larger-scale RF sensor network deployments. We have
analyzed the impact of 1-bit quantization on the wideband
spectrum covariance estimation. Our results suggest that the
superiority of the subspace technique in parameter estimation
translates into efficacy in 1-bit wideband spectrum sensing. We

show by simulations that the proposed method exhibits near-
zero false alarm while achieves similar detection performances
as compared to other typical sensing methods.
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