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5G Requirements and NR

IMT-2020 enhanced Mobile Broadband (eMBB)1

KPI Value

Peak data rate DL: 20 Gbps, UL: 10 Gbps
Peak spectral e�ciency DL: 30 bps/Hz, UL: 15 bps/Hz
5% user spectral e�ciency DL: 0.225 bps/Hz, UL: 0.15 bps/Hz
Average spectral e�ciency DL: 7.80 bps/Hz, UL: 5.40 bps/Hz

Three Key Technologies for 5G eMBB

Millimeter-Wave (mmWave) with large continuous bandwidths
Beamforming and MU-MIMO with large antenna arrays
Ultra-Dense Network for seamless coverage

3GPP 5G New Radio (NR)

FR1 (450-6000 MHz) and FR2 (24250-52600 MHz)
OFDM with �exible subcarrier spacing to support extreme
wideband transmissions in high frequencies
Support large number of antenna ports (i.e massive MIMO)

1
ITU-R, �Minimum Requirements Related to Technical Performance for IMT-2020 Radio

Interface(s),� Report M.2410-0, Nov. 2017.
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Cost-e�cient Solutions Are Necessary

Single-stream Analog Beamforming (ABF) with one RF chain

Massive MIMO systems with low-precision ADCs/DACs

Hybrid beamforming architectures with phase shifters and a
small number of RF chains

High 
cost

Low 
cost

Low performance

High performance
Fully-digital 

mMIMO
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Fully-connected 
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Single-stream
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 Subarray
 hybrid

Performance of low-complexity architectures depends heavily
on mmWave channel characteristics
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Urban Outdoor MmWave Channel Model

Channel matrix on an OFDM subcarrier for a UE k is given by

Hk =
∑L

l=1
αlaUE(θl)a

H
BS(φl).

aBS(φ)=[1, ej
2π
λ
d sin(φ), . . . , ej(N−1)

2π
λ
d sin(φ)]T,

aUE(θ)=[1, ej
2π
λ
d sin(θ), . . . , ej(M−1)

2π
λ
d sin(θ)]T,

MmWave channel models highly depend on the environments

Channels are dominated by LoS and/or low-order re�ection
multi-path components (MPCs) in urban outdoor

Angular spread in elevation is much smaller than in azimuth,
and users need to be separated in azimuth domain
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Channel Estimation Challenges in mmWave MU-MIMO

Full Channel State Information (CSI) for each user is generally
required at the BS for inter-user interference mitigation in
MU-MIMO

Channel estimation in hybrid architectures is challenging as
received reference signals are beamformed

Fortunately, mmWave MIMO channels are approximately
low-rank (dominated by LoS and low-order re�ections), and
Comprehensive Sensing (CS) methods can be utilized

Design of measurement matrix and recovery algorithm is
important
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Proposed BS and UE Architectures
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System architectures for the BS and UEs. Each UE has a single RF chain with
M phase shifters. The BS uses the switch-phase-shifter-subarray architecture,
which has two operation modes:

phase-shifter-based mode (PS mode) for beamforming transmission

switch-based mode (SW mode) for channel estimation
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Signaling for Channel Estimation

Assume that the kth UE transmits a pilot sequence sk ∈ C1×Ts

using its best beam wk. The received training signal at BS is

Y = FH
RF

(∑K

k=1
HH
k wksk + Nb

)
= FH

RF

(∑K

k=1
hksk + Nb

)
Assume orthogonality for pilots with sks

H
k′ = TsρUEδk,k′ , we

have

yk = YsHk = TsρUEFH
RFhk + FH

RFNbs
H
k

T snapshots of measurements

z=


y1,k

y2,k
...

yT,k

=TsρUE


FH
1,RF

FH
2,RF
...

FH
T,RF


︸ ︷︷ ︸

Φ

hk +


FH
1,RFN1,b

FH
2,RFN2,b

...
FH
T,RFNT,b

 s∗k

︸ ︷︷ ︸
n

,
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On-grid Channel Estimation

hk = HH
k wk =

∑L
l=1 βlaBS(φl) is e�ective MISO channel, it

contains fewer signi�cant paths compared to the full MIMO
channel Hk

In grid-based CS methods, a discrete dictionary
ΨBS=[aBS(φ1), . . . ,aBS(φGb

)] with Gb bases is used to
represent the channel hk as

hk = ΨBShv,

Denoting A = ΦΨBS, to estimate the sparse virtual channel
hv, one can formulate the following optimization problem:

minimize
hv

‖hv‖1 s.t. ‖z−Ahv‖22 ≤ η (P1)

P1 can be e�ciently solved via Orthogonal Matching
Pursuit (OMP) algorithm
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Gridless Channel Estimation via ANM

Using ΨBS introduces a basis mismatch problem

Let us consider a continuous dictionary as

A =

aBS (φ)α︸ ︷︷ ︸
Atom

: φ∈
(
−π
2
,
π

2

]
, α ∈ C, |α| = 1


The atomic norm of a channel h is de�ned as

‖h‖A =inf { g > 0 : h ∈ g · conv (A)}

=inf
{∑

i
bi : h = bi

∑
i
ai, bi > 0,ai ∈ A

}
.

Based on measurements, one can formulate the following
optimization problem without introducing a discrete dictionary

minimize
h

‖h‖A s.t. ‖z−Φh‖22 ≤ η. (P2)
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Gridless Channel Estimation via ANM

‖h‖A de�ned in (P2) equals the optimal value of the following
matrix trace minimization problem:

minimize
u,t

1

2
(t+ u1) s.t.

[
T (u) h
hH t

]
� 0, (P3)

where T (u) is a Hermitian Toeplitz matrix with the �rst row
as u = [u1, . . . , uN ]

T.

In the noisy case, using the atomic norm, a regularized
optimization can be formulated as

minimize
D�0

ξ

2
(t+ u1)+

1

2
‖z−Φh‖22

s.t. D =

[
T (u) h
hH t

]
.

(P4)

P4 is a SDP, and can be solved by o�-the-shelf convex
optimization tools in polynomial time
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Antenna Domain Sub-Sampling (ADSS)

A = ΦΨBS with measurement matrix Φ and dictionary
matrix ΨBS. OMP can recover hv in the noiseless case if

µ(A) = max
i 6=j

|aH
i aj |

‖ai‖2 · ‖aj‖2
<

1

2L− 1
,

where ai and aj are two di�erent columns of A, and µ(A) is
the coherence of A

De�ning AΦ =
{
ΦaBS(φ) : φ ∈

(
−π

2 ,
π
2

]}
, the problem (P2)

with η = 0 in the noiseless setting has a unique solution if the
number of paths satis�es

L <
spark(AΦ)

2
,

where spark(AΦ) is de�ned as the smallest number of atoms
which are linearly dependent in AΦ
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Antenna Domain Sub-Sampling (ADSS)

To construct A with low coherence and AΦ with large spark,
Φ and ΨBS (or A) should be constructed in di�erent
�domains�

As the dictionary is in angular domain (beam domain),
beam-domain measurement is unable to achieve low-coherence

We consider antenna domain for construction of Φ

ADSS : Φ = TsρUE[ei1,1 , ei1,2 , . . . , ei1,Q , . . . , eiT,Q ]
H

ADSS measurement matrix and ΨBS (or A) are mutually
incoherent
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Mutual Coherence of ADSS

10 20 30 40 50 60

Number of measurements

0

0.2

0.4

0.6

0.8

1

M
u
tu

a
l 
co

h
e
re

n
c
e

Welch bound

RandBF Sub

RandBF Full

Beam Sub

Beam Full

ADSS

Beam-steering (Beam) with a fully-connected array

Beam-steering with contiguous subarrays

Random phase-shifting (RandBF) with a fully-connected array

Random phase-shifting with contiguous subarrays

ADSS via switches
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mmWave MU-MIMO precoding/combining

RF Beam-tracking + baseband ZF

BS transmits Q DL pilots using Q sub-arrays

Each UE receives DL pilots using codewords from UE
codebook U = {w(1), . . . ,w(P )} , and �nd a best UE beam
wk which maximize the aggregate received power

UE k transmits UL pilot to BS using wk, the BS estimates the
e�ective user channel hk using OMP or ANM methods; the
BS has Ĥ = [ĥ1, ĥ2, . . . , ĥK ]H

For qth RF chain, select UE k = q, fq = argmaxf∈Fq |ĥ
H
k f |2,

where Fq is the RF beam-steering codebook subject to low
phase-shifter resolution

Design baseband precoder as PBB = (ĤFRF)
−1

‖FRF(ĤFRF)−1‖F
using

Zero-Forcing
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Performance Evaluation
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M = 8 for UEs, and N = 64, Q = 8 for BS

Ray-tracing is used to generate MPCs; up to 3rd order
re�ections are taken into account

Blocked UEs which cannot �nd a LoS or a re�ected path are
not considered; 8000 UEs are randomly divided into 1000
groups and 8 UEs in each group are served simultaneously.
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NMSE for Channel Estimation
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Normalized Mean Square Error (NMSE) E{‖hk−ĥk‖22/‖hk‖22}
Only 16 antennas are sampled via the switch network randomly

When a dictionary with Gb = N is used, OMP su�ers severely
from basis mismatch

As Gb increases, the gap between OMP and ANM decreases
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Multi-User Spectral E�ciency Performance
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Perfect CSI

Performance of multi-user hybrid precoding with sub-arrays,
with di�erent channel estimates

Spectral e�ciency is estimated as log2(1 + γ) with γ the
signal-to-interference-plus-noise ratio
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Concluding Remarks

We proposed a low-complexity hybrid architecture in which an
inexpensive switch network is added to the subarrays to
facilitate channel estimation.

We formulated the mmWave channel estimation as an ANM
problem which can be solved via SDP with polynomial
complexity.

A low-coherence measurement matrix is constructed via
sub-sampling in antenna domain by the cheap switch network.

ANM achieves better channel estimation accuracy compared
to grid-based CS methods

Better CSI accuracy can help mmWave MU-MIMO hybrid
precoding to achieve better user spectral e�ciency
performance
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