Scalable Two-hop Relaying for mmWave Networks

Junquan Deng Doctoral candidate

Aalto University Finland

junquan.deng@aalto.fi

Aalto University

- Cellular mmWave communication and its challenges
- System model for mobile mmWave relaying
- Two-hop LOS probability
- Relay & beam discovery and selection protocol
- Relaying overhead analysis and reduction
- Performance evaluation

Cellular mmWave communication and its challenges

- Path loss due to aperture -> large antenna array required
- Large antenna array -> hybrid or analog architecture required
- Diffraction not significant -> sensitive to blockages
- Huge penetration loss -> LOS condition/strong reflection is crucial
- Dense deployment^[1] for full coverage -> high CAPEX and OPEX

Building footprint in urban scenario^[2]

mmWave directional transmission

[1] T. Bai and R. W. Heath, "Coverage and Rate Analysis for Millimeter-Wave Cellular Networks," in *IEEE Transactions on Wireless Communications*, vol. 14, no. 2, pp. 1100-1114, Feb. 2015.
 [2] https://cesiumjs.org/NewYork/index.html

System model for mobile mmWave relaying

- mmWave BSs, mobile relay stations (RS) and UEs
- Controlled by a sub-6 GHz macro cellular network
- Downlink transmission
- BS-to-UE, BS-to-RS and RS-to-UE links

System model for mobile mmWave relaying

- BS: 3 UPA with M antennas
- RS: 1 UCA with N antennas
- UE: 1 antenna
- Channel: GSCM + LOS/NLOS/outage model

System model for mobile mmWave relaying

- ABF with fixed beams is used for training and transmission
- BS: a codebook of L_{BS} beams
- RS: a codebook of L_{RS} beams
- Received power increases as L_{BS} or L_{RS} increases
- System overhead increases as *L*_{BS} or *L*_{RS} increases

Two-hop LOS probability for mmWave relaying

One-hop LOS probability^[3]

$$p_{\text{out}}(d) = \max(0, 1 - e^{-a_{\text{out}}d + b_{\text{out}}})$$

$$p_{\text{los}}(d) = (1 - p_{\text{out}}(d))e^{-a_{\text{los}}d},$$

$$p_{\text{nlos}}(d) = 1 - p_{\text{out}} - p_{\text{los}}(d).$$

• **Two-hop LOS** analysis based on one-hop LOS probability. Consider a cell with radius R_c and RS set \mathcal{R}_0 , assuming LOS condition $\xi(i, j)$ between node *i* and *j* is independent, the two-hop LOS probability is a function of the size of \mathcal{R}_0

$$\begin{split} p_{2\text{los}}(d) &= 1 - \prod_{j=1}^{|\mathcal{R}_0|} \mathbb{P}\Big(\xi(b,j) \neq 0 \text{ or } \xi(j,k) \neq 0\Big) \\ &= 1 - \left(\int_0^{2\pi} \int_0^{R_c} \frac{r}{\pi R_c^2} \left(1 - p_{\text{los}}(r) p_{\text{los}}(d_2)\right) dr d\theta\right)^{|\mathcal{R}_0|} \end{split}$$

[3] M. R. Akdeniz et al., "Millimeter Wave Channel Modeling and Cellular Capacity Evaluation," IEEE J. Sel. Areas Commun. , vol. 32, no. 6, pp. 1164-1179, June 2014.

Two-hop LOS probability for mmWave relaying

- mmWave communication suffers severe blockage effect
- Key idea of relaying: create two-hop LOS connection for blocked UEs
 - Large number of cell-edge UEs can not find direct LOS connection to BS
 - Dense deployment or relays can improve the mmWave network performance

[3] M. R. Akdeniz et al., "Millimeter Wave Channel Modeling and Cellular Capacity Evaluation," IEEE J. Sel. Areas Commun. , vol. 32, no. 6, pp. 1164-1179, June 2014.

Two-hop LOS probability for mmWave relaying

- mmWave communication suffers severe blockage effect
- Key idea of relaying: create two-hop LOS connection for blocked UEs
 - Two-hop LOS probability increases as the density of RSs increases
 - However, the relay & beam discovery and selection overhead also increases as number of RSs increases

Relay & beam discovery and selection protocol

- BS-DSS: BS Directional Search Signals transmitted by BSs periodically
- **RS-DSS**: RS Directional Search Signals transmitted by RS candidates periodically

- LOS coherence time T_{los} : during which LOS condition is unchanged
- Beam coherence time T_{beam} : during which optimal beam is unchanged
- Minimum signal duration t_{min}: signal should be long enough to be detected ^[4]

BS-DSS with periodRS-DSS with period $T_{\rm b}$ and duration $t_{\rm b}$ $T_{\rm r}$ and duration $t_{\rm r}$

$$T_{\rm b}$$
, $T_{\rm r}$ << min ($T_{\rm los}$, $T_{\rm beam}$)

$$t_{
m b}$$
 , $t_{
m r}~\geq~t_{
m min}pprox 10\mu s$

 \succ T_{los} and T_{beam} depends on network mobility, beamwidth and blockage distribution

 \succ T_{los} and T_{beam} in the order of 100 ms with RS/UE speed of 30 km/h

Aalto University

> Signaling periods $T_{\rm b}$ and $T_{\rm r}$ for BS-DSS and RS-DSS should be in the order of 10 ms

[4] C. N. Barati et al., "Directional initial access for millimeter wave cellular systems," Asilomar Conference on Signals, Systems and Computers, pp. 307-311, Nov. 2015.

Signaling overhead

RS candidate set selection

- To exploit the benefit of two-hop LOS transmission for outage/NLOS UEs and to reduce discovery overhead, a set of optimal mmWave RS candidates $\mathcal{R}_c \subseteq \mathcal{R}_0$ needs to be found.
- ➢ We consider $\mathcal{R}_c \subseteq \mathcal{R}_{los} \subseteq \mathcal{R}_0$, i.e. the RS candidates should be in LOS to BS.

> The size of \mathcal{R}_{c} is limited to be smaller than a parameter N_{max}

> When there are more than N_{max} LOS RSs, \mathcal{R}_c is selected using a **relay utility function** for each candidate and **a dissimilarity metric** for two candidates in \mathcal{R}_c , e.g.

$$u(j) \triangleq \left[L_j / \beta_{\text{los}} \right]^{1/\alpha_{\text{los}}}, \text{ RS}_j \in \mathcal{R}_{\text{los}}$$
$$s(i,j) \triangleq \mathbb{1}\left(b_i \neq b_j \right) + \mathbb{1}\left(|u(i) - u(j)| > d_{\min} \right)$$

RS candidate set selection

 \succ To measure the quality of candidate set \mathcal{R}_c , consider a heuristic set utility function

>RS candidate set selection algorithm

Algorithm 1 RS candidate set selection algorithm.1: $\mathcal{R}_c \leftarrow \mathcal{R}_{los}, \mathcal{R}_c = \{ RS_{c_1}, \dots, RS_{c_N} \}$ with $N = N_{los}$ 2: while $N > N_{max}$ do3: $\Delta \leftarrow [0, \dots, 0]_{1 \times N}$ 4: for $k \leftarrow 1$ to N do5: $\Delta[k] = U(\mathcal{R}_c) - U(\mathcal{R}_c \setminus RS_{c_k})$ 6: end for7: $[\Delta_{\min}, k^*] \leftarrow \min(\Delta), \mathcal{R}_c \leftarrow \mathcal{R}_c \setminus RS_{c_{k^*}}, N \leftarrow N - 1$ 8: end while

Performance evaluation

$$\begin{array}{l} \textbf{Single-stream} \\ \textbf{spectral efficiency} \end{array} \qquad \rho = \min\left(\log_2\left(1 + \gamma_{\text{eff}}\frac{P}{I + N_0}\right), \rho_{\max}\right) \end{array}$$

Parameter	Setting
mmWave network deployment	4×4 square cells with ISD=250 m
Average number of UEs/RSs	10 UEs per cell, 100 RSs per cell
mmWave frequency/bandwidth	28 GHz/1GHz
mmWave pathloss model	$\alpha_{ m los}\!=\!61, \beta_{ m los}\!=\!2, \sigma_{ m los}\!=\!6{ m dB}$
	$\alpha_{ m nlos} = 72, \beta_{ m nlos} = 3, \sigma_{ m nlos} = 9 { m dB}$
LOS/NLOS/Outage model	$a_{\text{out}} = 1/30, b_{\text{out}} = 5.2, a_{\text{los}} = 1/67$
LOS correlation distance	10 m
Number of mmWave antennas	BS: 8×8 elements planar array
	RS: 16 elements circular array
Maximum mmWave TX power	BS: 30 dBm , RS: 24 dBm
Number of mmWave beams	BS: 18, RS: 8
Resource scheduling for UEs	Proportional Fairness
Resource partition for relaying	$ ho_{2nd}/(ho_{1st}+ ho_{2nd})$ for 1st hop,
with capacities ρ_{1st}, ρ_{2nd}	$ ho_{1 \mathrm{st}}/(ho_{1 \mathrm{st}}+ ho_{2 \mathrm{nd}})$ for 2nd hop.

Performance evaluation

Performance evaluation

- Without relaying, blocked UEs suffer from low throughput
- Number of two-hop LOS UEs increases when relaying is applied
- Signal overhead is significant and must be considered
- Proposed RS candidate set selection method provides better performance than random selection
- Choosing a proper size for relay candidate set is important to achieve both high mean user performance and consistent user experience

