# Semi-supervised t-SNE for Millimeter-wave Wireless Localization

Junquan Deng<sup>1</sup>, Wei Shi, Jian Hu, Xianlong Jiao<sup>2</sup>

<sup>1</sup>Sixty-third Research Institute, National University of Defense Technology, China <sup>2</sup>College of Computer Science, Chongqing University, China



### Motivation

- Mobile location information acquisition is fundamental in building smart cites and intelligent transportation systems
- Seamless high-precision localization, especially on the network side, is a challenging problem in NLOS and GPS-denied environments
- High-resolution sensing functions are envisioned to be integrated in future 6G Radio Access Networks (RANs), which opens up new opportunities for high-precision positioning and tracking



#### State of the Art

- Current network-side 5G NR positioning techniques require rigorous calibration or accurate synchronization among network elements
- Conventional **fingerprinting** methods require a large number of **densely-sampled measurements**, which scales poorly to large areas and renders automation to dynamic environments challenging



## Principle of CSI Mapping

- High-dimensional multiantenna Channel State Information (CSI) strongly dependents on UE position, which is low-dimensional
- Manifold learning

methods can be applied to map CSI data to a channel chart where nearby points correspond to nearby locations in geographical space



#### Proposed mmWave Localization Framework

- 1 CSI and Side-information Collection
- (2) CSI Feature Extraction
- ③ Local CSI Dissimilarity Learning
- ④ Global CSI Dissimilarity Matrix construction
- (5) Semi-Supervised Manifold Learning



#### Multi-antenna CSI Sample Collection

One CSI sample: Multi-path components  $\mathbf{h}_{t,f} = \sum_{l=1}^{P} \alpha_{t,f}^{(l)} \mathbf{s}(\phi_t^{(l)}) + \mathbf{n} \implies \mathbf{C} = \mathbb{E}_f \left[ \mathbf{h}_{t,f} \mathbf{h}_{t,f}^{\mathrm{H}} \right]$ 

Labeled CSI data set:

$$\mathcal{L}^{(b)} = \{\mathbf{C}_1^{(b)}, \dots, \mathbf{C}_L^{(b)}\}$$
 with  $\mathbf{P} = [\mathbf{p}_1, \dots, \mathbf{p}_L]$ 

**Unlabeled CSI data set:** 

$$\mathcal{U}^{(b)} = \{ \mathbf{C}_{L+1}^{(b)}, \dots, \mathbf{C}_{L+U}^{(b)} \}$$

2021/12/11

#### **CSI Feature Extraction**

- BS uses MUSIC to extract Multipath Parameters
- Power Angular Profile (PAP)





power

#### CSI Dissimilarity based on PAP





Point clouds of virtual transmitter points : (a) Without Clustering (b) With Clustering Dissimilarity metric deduced from a virtual transmitter point cloud

# t-SNE (t-distributed stochastic neighbor embedding) Widely used for visualizing high-dimensional data

#### unsupervised





#### t-SNE Basic

| <i>N</i> data samples<br>Dissimilarity matrix <i>D</i>                                                                                                                                                                                 |                                  | Mapping                                                                                                           | Lov<br>representa             | w-dimensional ation $\mathbf{Z} = \{ z_1, \dots, z_N \}$                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Similarity probability matrix <b>P</b>                                                                                                                                                                                                 |                                  |                                                                                                                   | Similarity p                  | orobability matrix <b>Q</b>                                                                                                                                       |
| $p_{nm} = \frac{1}{2} (p_{m n} + p_{n m})$<br>= $\frac{1}{2} \left( \frac{e^{-d_{mn}^2/2\sigma_n^2}}{\sum_{k \neq n} e^{-d_{kn}^2/2\sigma_n^2}} + \frac{e^{-d_{nm}^2/2\sigma_m^2}}{\sum_{k \neq m} e^{-d_{km}^2/2\sigma_m^2}} \right)$ |                                  | $q_{nm} = \frac{(1 + \ \mathbf{z}_n - \mathbf{z}_m\ _2^2)}{\sum_{l \neq k} (1 + \ \mathbf{z}_l - \mathbf{z}_k\ }$ |                               | $\frac{1}{\mathbf{z}_{k}} + \ \mathbf{z}_{n} - \mathbf{z}_{m}\ _{2}^{2})^{-1} \\ \frac{1}{\mathbf{z}_{k}} (1 + \ \mathbf{z}_{l} - \mathbf{z}_{k}\ _{2}^{2})^{-1}$ |
| Minimize                                                                                                                                                                                                                               | $f_{t-\mathrm{SNE}}(\mathbf{Z})$ | $=\sum_{n}\sum_{m}p_{n}$                                                                                          | $m\log \frac{p_{nm}}{q_{nm}}$ | via gradient<br>descent                                                                                                                                           |
|                                                                                                                                                                                                                                        | Kullback                         | -Leibler ( <b>KL</b> ) div                                                                                        | eraence                       |                                                                                                                                                                   |

## Apply t-SNE to CSI Data with PAP Dissimilarity

t-SNE

Can't obtain

geographical

location info.

absolute



CSI samples collected at colored positions



Small number of neighbors (perplexity)

Large number of neighbors (perplexity)

#### Semi-supervised t-SNE Problem

- To equip t-SNE with localization capability, we need to use some position labels to govern the learning process of t-SNE.
- To this end, we formalize the following semi-supervised t-SNE problem:

$$\begin{cases} \text{minimize} & f_{t-\text{SNE}}(\mathbf{Z}) = \sum_{n} \sum_{m} p_{nm} \log \frac{p_{nm}}{q_{nm}}, \\ \text{subject to} & \mathbf{z}_{i} = \mathbf{y}_{i}, i \in \mathcal{L}, \mathcal{L} = \{1, \dots, L\}. \end{cases}$$

#### Semi-supervised t-SNE Algorithm

- Four adjustable Parameters
- Map the labeled CSI to its fixed position during learning iterations
- The idea is simple, and we will see it is effective!

Algorithm 1 The semi-supervised t-SNE algorithm 1: Inputs:  $\mathbf{D} \in \mathbb{R}^{N \times N}$ ,  $\{\mathbf{y}_1, \dots, \mathbf{y}_L\}$ ,  $\mathcal{L} = \{1, \dots, L\}$ 2: Cost function parameter:  $k_t$ 3: **Optimization parameters**: T,  $\eta$  and  $\alpha$ 4: Initialize:  $\mathbf{Z}^{(0)} = [\mathbf{z}_1^{(0)}, \dots, \overline{\mathbf{z}_N^{(0)}}], \mathbf{Z}^{(-1)} = \mathbf{Z}^{(0)}$ , with 5:  $\mathbf{z}_i^{(0)} = \mathbf{y}_i$ , for  $i \in \mathcal{L}$ ,  $\mathbf{z}_i^{(0)} = \mathbf{y}_n$ , for  $i \notin \mathcal{L}$  and  $d_{n,i}$  is smallest for all  $n \neq i$ 7: Use binary search to determine the kernel sizes  $\{\delta_n\}_{n=1}^N$ , and compute the probability matrix  $\mathbf{P}$  using (3) 8: for t = 1, ..., T do Compute probability matrix  $\mathbf{Q}$  using (4) 9: Compute  $\nabla = \left[\frac{\mathrm{d}f_{t-\mathrm{SNE}}(\mathbf{Z})}{\mathrm{d}\mathbf{z}_{1}}, \dots, \frac{\mathrm{d}f_{t-\mathrm{SNE}}(\mathbf{Z})}{\mathrm{d}\mathbf{z}_{N}}\right]$  using (5) Update  $\mathbf{Z}^{(t)} = \mathbf{Z}^{(t-1)} + \eta \nabla + \alpha (\mathbf{Z}^{(t-1)} - \mathbf{Z}^{(t-2)})$ 10: 11: Set  $\mathbf{z}_i^{(t)} = \mathbf{y}_i$ , for  $i \in \mathcal{L}$ 12: 13: end for 14: return:  $\mathbf{Z}^{(T)}$ 

#### 2021/12/11

#### Performance Evaluation - Simulated Scenario

- GIS map data from OpenStreetMap (OSM)
- 8 BSs with ULAs, each has M = 16 elements
- A ray-tracing channel model is used to generate the multi-path channels
- The carrier frequency is 28 GHz, system bandwidth is
  256 MHz with 128 OFDM subcarriers
- UEs transmit signals with a fixed power of 23 dBm
- UEs on roads with a speed of 5 meters per second
- We collect 1500 CSI samples from UE traces

| Parameter                                                  | Value                    | alue Parameter                   |                                                               | Value |                                              |  |
|------------------------------------------------------------|--------------------------|----------------------------------|---------------------------------------------------------------|-------|----------------------------------------------|--|
| Carrier frequency<br>System bandwidth<br>Subcarrier number | 28 GHz<br>256 MHz<br>128 | UE pilot<br>UE anter<br>BS anter | UE pilot Tx power<br>UE antenna pattern<br>BS antenna pattern |       | 23 dBm<br>Omnidirectional<br>Cosine response |  |
|                                                            |                          |                                  |                                                               |       |                                              |  |
| 80                                                         |                          |                                  |                                                               |       |                                              |  |
| 60                                                         |                          |                                  |                                                               |       |                                              |  |
| 40                                                         |                          | Ģ                                | 1 4 2                                                         |       |                                              |  |
| 20                                                         |                          |                                  |                                                               | 71 _  |                                              |  |
| 0                                                          |                          |                                  |                                                               | 8_    |                                              |  |
| -20                                                        |                          |                                  |                                                               |       |                                              |  |
| -40                                                        |                          |                                  |                                                               |       |                                              |  |
| -60                                                        |                          |                                  |                                                               |       |                                              |  |
| -80                                                        |                          |                                  |                                                               | 4     |                                              |  |
| -100                                                       |                          |                                  |                                                               |       |                                              |  |
| -120 -                                                     |                          |                                  | 1 -3                                                          |       |                                              |  |
| 140                                                        |                          |                                  |                                                               |       |                                              |  |
| -140 -150                                                  | -100                     | -50                              | 0                                                             | 50    | 100                                          |  |

#### Performance Evaluation - Metric

• Mean localization error (MLE)

$$MLE = \frac{1}{U} \sum_{n=1}^{U} \|\mathbf{z}_{L+n} - \mathbf{p}_{L+n}\|_2$$

U = 1425 unlabeled samples, L = 75 labeled samples

#### **Performance Evaluation - Learning Process**



St-SNE iteration process with perplexity  $k_t = 30$ , learning rate  $\eta = 1000$ , and momentum  $\alpha = 0.6$ 

The effects of perplexity  $k_t$  in St-SNE on the localization performance

Compared to **kNN** and **semi-supervised Laplacian Eigenmap** (SLE)





Compared to **kNN** and **semi-supervised Laplacian Eigenmap** (SLE)





Compared to kNN and semi-supervised Laplacian Eigenmap (SLE)





- Positions of points far from the labeled anchors cannot be accurately estimated via kNN and SLE
- St-SNE greatly reduces the errors of those points, with only 7% of unlabeled points having a error >15 m



**Cumulative Distribution Function (CDF) of localization errors** 

#### Conclusion

- We have proposed a machine learning method called St-SNE for **mmWave multi-cell mobile localization**.
- It embeds the high-dimensional multi-antenna CSI into the 2D map by governing the self-learning process of t-SNE with a few position labels.
- It is scalable and automatic in the sense that it could be implemented for multi-cell networks, with spatially sparse labeled samples, and does not require accurate network synchronization.
- With **relatively higher computation complexity**. A prospective research direction would be to use a graph or tree method to accelerate its computation of the probability matrixes.