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Motivation

• Mobile location information acquisition is fundamental in
building smart cites and intelligent transportation systems

• Seamless high-precision localization, especially on the 
network side, is a challenging problem in GPS-denied 
environments

• High-resolution sensing functions are envisioned to be 
integrated in future 6G RANs, which opens up new 
opportunities for high-precision positioning and tracking 



Channel Charting (CC) Principle

• High-dimensional Channel State Information (CSI) strongly 
dependents on UE position, which is low-dimensional

• In CC, Manifold learning methods are applied to map CSI data 
to a channel chart where nearby points correspond to nearby 
locations in geographical space



State of the art

• Current network-side NR positioning techniques require 
rigorous calibration or accurate synchronization among 
network elements

• Conventional fingerprinting methods require a large number 
of densely-sampled measurements, which scales poorly to 
large areas and renders automation to dynamic environments 
challenging

• Absolute position information is not available in conventional CC

• CSI at a single BS is considered in conventional CC



Semi-Supervised Multi-point Channel 
Charting (SS-MPCC)

• A new framework for large-scale network-side cellular localization

• Based on CSI samples from spatio-temporal mobile locations, a 
few labeled CSI samples with location information,  and side 
information（RSRP, timestamp）

• Accurate synchronization among multiple BSs is not required



SS-MPCC Framework

STEPs:

① CSI and side-information 
collection

② CSI feature extraction

③ Local CSI dissimilarity 
learning

④ Global graph construction

⑤ Constrained manifold 
learning



CSI and side-information collection
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CSI feature extraction

• MUSIC 

• Power Angular Profile（PAP）



Local CSI dissimilarity learning

Point clouds of virtual Tx points ：
a) without scattering loss compensation; 
b) with scattering loss compensation and 

DBSCAN clustering.

Dissimilarity metric deduced 
from a virtual Tx point cloud



Global graph construction

• For each BS b, we have a local CSI dissimilarity matrix

• Construct a global dissimilarity matrix



Global graph construction

• If node n is in the set of ke nearest neighbors of node m, nodes m
and n are connected in the graph

• If the timestamps tm, tn of two nodes m, n satisfy |tm –tn|< Tth, 
connect nodes m and n in the graph.

• Denote                                                                   , if the
nodes m and n are connected, then the weight wm,n is given by



Constrained manifold learning

Objective function:

Alignment cost

Tradeoff coefficient

Manifold Smoothness



Constrained manifold learning

Channel Chart



Performance Evaluation

• Mean localization error(MLE)

• Kruskal’s stress (KS)

• Trustworthiness(TW) and continuity (CT)
• TW and CT have values in [0 1] and larger values imply better

preservation of neighborhood relationship 



Simulated Urban mmWave Cellular Network

• GIS map data from OpenStreetMap (OSM)
• 6 BSs with ULAs, each has M = 16 elements
• A ray-tracing channel model is used to 

generate the multi-path channels
• The carrier frequency is 28 GHz, system 

bandwidth is 256 MHz with 128 OFDM 
subcarriers

• UEs transmit reference signals with a fixed 
power of 23 dBm

• UEs move along the roads with a average 
speed of 5 meters per second

• We collect 3000 CSI samples from UE traces



SS-MPCC Performance

Visualization of the localization performance with different numbers of labeled CSI samples, number of 
unlabeled samples is U = 3000. The MLEs are 12.6, 6.8 and 5.6 m for L =50, 150 and 300 labeled 
samples. The positions for labeled samples are marked by circles.



Performance Comparison

Visualization of the channel charts learned by 
(a) unsupervised LE
(b) LE with timestamps 
(c) LE with L=300 labeled samples and no timestamp. 



Performance Comparison



Performance Comparison



Conclusion
• Side-information can be incorporated in SS-MPCC to support large-scale 

network-side localization and tracking in a distributed manner. 

• Multi-BS CSI feature fusion and incorporation of timestamps to increase 
manifold smoothness can be implemented in global graph construction 
based on graph Laplacian. 

• SS-MPCC is able to perform large-scale network-side positioning for 
scenarios with realistic UE motion, even with a very small portion of labeled 
data. 

• SS_MPCC could be implemented for varying number of BSs, with spatially 
sparse labeled samples, and does not require accurate network 
synchronization. 

• Future research directions include out-of-sample mapping to locate new 
samples on the channel chart for real-time positioning applications, and 
filtering algorithms for multi-target tracking 


