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Motivation

* Mobile location information acquisition is fundamental In
building smart cites and intelligent transportation systems

* Seamless high-precision localization, especially on the
network side, I1s a challenging problem in GPS-denied
environments

* High-resolution sensing functions are envisioned to be
Integrated In future 6G RANSs, which opens up new
opportunities for high-precision positioning and tracking



Channel Charting (CC) Principle

* High-dimensional Channel State Information (CSl) strongly
dependents on UE position, which i1s low-dimensional

* In CC, Manifold learning methods are applied to map CSI data
to a channel chart where nearby points correspond to nearby
locations In geographical space



State of the art

* Current network-side NR positioning techniques require
rigorous calibration or accurate synchronization among
network elements

* Conventional fingerprinting methods require a large number
of densely-sampled measurements, which scales poorly to
large areas and renders automation to dynamic environments
challenging

* Absolute position information is not available in conventional CC
* CS| at a single BS Is considered in conventional CC



Semi-Supervised Multi-point Channel
Charting (SS-MPCC)

* A new framework for large-scale network-side cellular localization

* Based on CSI samples from spatio-temporal mobile locations, a
few labeled CSI| samples with location information, and side
information (RSRP, timestamp)

* Accurate synchronization among multiple BSs is not required



SS-MPCC Framework
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CSI| and side-information collection
One CSI sample:

s =3 als0) +n — C = Ey[hy shil]

Labeled CSI| date set:;

c® = (¢ . ¢ win P = Pi,...,PL)

Unlabeled CSI date set:;

U® = {CY) ... CYL Y v [t ty] ana {9




CSl feature extraction

* MUSIC
« Power Angular Profile (PAP)

f= A, ., Ap,01,...,0p]
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Local CSI dissimilarity learning
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Point clouds of virtual Tx points :

a)

without scattering loss compensation;
b) with scattering loss compensation and

DBSCAN clustering.

Dissimilarity metric deduced
from a virtual Tx point cloud



Global graph construction

* For each BS b, we have a local CSI dissimilarity matrix

D®) ¢ RLAU)x(L+U)
* Construct a global dissimilarity matrix

B -1 B
Dm,n — (Z Ub) vaD?(?n,m

b=1 b=1

where v, 1s a reliability weight



Global graph construction

* It node nis in the set of k, nearest neighbors of node m, nodes m
and n are connected in the graph

* If the timestamps t,,, t,, of two nodes m, nsatisty |t —t,[< T,
connect nodes m and n in the graph.

*Denote A={1,...,LYand B={L+1,...,L+ U}, ifthe
nodes /mand n are connected, then the weight w,, , Is given by

( S ; —||Pm;pn||2
ae 93 1 (1 — CB)@ e g lf n,m = A
—Dm . n —ltle—tn‘
W.on = < ae 92 + (1 — a)e o3 : if n,m c B,
—Drn.n
R otherwise.




Constrained manifold learning

Objective function:
L+U

ZHZ’R pﬂHQ""Y Z Wi, || Zm — ZnHz

m=1,n=1

Alignment cost Manifold Smoothness

Tradeoff coefficient



Constrained manifold learning

F(2)=3"" 2w —pal} ++Tx (Z"AZ — Z"WZ)
=Tr[(Z-Q)'J(Z-Q)+~Z"LZ],

L = A — W is the graph Laplacian
J = diag {1 A
—— ——| Q=[P,P| e RE+U*2

Channel Chart Z = (yL + J)_lJ Q



Performance Evaluation

* Mean localization error(MLE)

1
MLE = — Z |2L4n — Prinll2

* Kruskal’s stress (KS)

'n,m nm

* Trustworthiness(TW) and continuity (CT)

* TW and CT have values in [0 1] and larger values imply better
preservation of neighborhood relationship



Simulated Urban mmWave Cellular Network

* GIS map data from OpenStreetMap (OSM) oF

* 6 BSs with ULAs, each has M = 16 elements

* Aray-tracing channel model is used to
generate the multi-path channels

* The carrier frequency is 28 GHz, system
bandwidth is 256 MHz with 128 OFDM 150 -
subcarriers

* UEs transmit reference signals with a fixed i
power of 23 dBm

* UEs move along the roads with a average
speed of 5 meters per second -300 |

* We collect 3000 CSI samples from UE traces
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SS-MPCC Performance
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Visualization of the localization performance with different numbers of labeled CSI samples, number of
unlabeled samples is U = 3000. The MLEs are 12.6, 6.8 and 5.6 m for L =50, 150 and 300 labeled
samples. The positions for labeled samples are marked by circles.



Performance Comparison
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(b) LE with timestamps.

Visualization of the channel charts learned by

(a) unsupervised LE

(b) LE with timestamps
(c) LE with L=300 labeled samples and no timestamp.
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(c) LE with 300 labeled samples and no timestamp.



Performance Comparison

PERFORMANCE COMPARISON

TABLE 1

kNN | MPCC SS-MPCC

Timestamps X X v X v
L 300 X X 300 300
MLE [m] 18.8 N/A N/A 16.7 5.6
KS 2547 | 3593 | .1938 2540 0768
W K =50 9699 | .9629 | .9951 9819 9950

K =100 | .9689 | .9529 | .9898 9814 9956
CT K =50 9641 | 9711 | .9943 9735 9968

K =100 | 9591 | .9645 | .9912 9719 9973




Performance Comparison
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Conclusion

* Side-Iinformation can be incorporated in SS-MPCC to support large-scale
network-side localization and tracking in a distributed manner.

* Multi-BS CSI feature fusion and incorporation of timestamps to increase
manifold smoothness can be implemented in global graph construction
based on graph Laplacian.

* SS-MPCC is able to perform large-scale network-side positioning for
scenarios with realistic UE motion, even with a very small portion of labeled
data.

* SS_MPCC could be implemented for varying number of BSs, with spatially
sparse labeled samples, and does not require accurate network
synchronization.

* Future research directions include out-of-sample mapping to locate new
samples on the channel chart for real-time positioning applications, and
filtering algorithms for multi-target tracking



