

#### Self-organizing Networks for 5G: Directional Cell Search in mmW Networks

Furqan Ahmed, <u>Junquan Deng</u>, Olav Tirkkonen Department of Communications and Networking, Aalto University

#### **Overview**

- Road to 5G SON
  - Possible use-cases for 5G SON
  - SON based on graph models
- Directional Cell Search(DCS) for mmW Networks
  - System model considered for DCS
  - Proposed framework for self-organized DCS
  - Beam assignment algorithm for DCS
  - Simulation results
- Conclusion and Future Work



# SON for 5G

#### Paradigms of 5G

- Massive broadband
- Massive M2M communication
- Ultra-reliable communication
- Disruptive Technologies for 5G
  - Massive MIMO
  - millimeter wave (mmW)
  - Multi-RAT
  - SDN & C-RAN

#### • SON for 5G

**Aalto University** 

- Potentials & Challenges
- User-centric
- SDN-enabled



#### Road to 5G SON: Use Cases

- Spectrum Management and Sharing
  - Inter-operator spectrum sharing
- Optimization of User Association
  - User association for mmW network
- Multi-RAT Optimization
  - RAT-selection
  - Traffic steering
  - Inter-RAT handover

#### Directional Cell Search

- mmW beamforming for both data and control channel
- Configuration of beams for efficient discovery





#### Road to 5G SON : Graph Models

- The actual complicated network state can be abstracted and modeled as a network graph.
- Nodes can be various physical and logical entities: such as TX/RXs, links, cells, sectors, beams etc.
- Edges can be channel coefficients, interferences, various couplings.
- Graph based models simplify the modeling and abstraction of networks, paving the way for efficient network-wide resource allocation and management.



#### Directional Cell Search : System Model

- Network consisting of *I* base stations
- Each cell has *B* analog beams for cell discovery
- Time division multiplexing for beam broadcast
- Handover margin (HOM) specifies handover users



Analog beamforming for  $8 \times 8$  planar array



#### Directional Cell Search : Aggregation of Measurements & Control





## Directional Cell Search : Graph Multicoloring Formulation

- Consider Handover Relationships between Cells for History Users.
- Let  $G(\mathcal{I}, \mathcal{E}, w)$  denote a multigraph representation of the network, A function w related to interference is defined on the edge set  $\mathcal{E}$ .
- Weighted Directed Multigraph: The graph is constructed on the basis of user measurements by considering interference-to-carrier (I/C) ratios between the strongest beam of potential handover candidate cell, and the beams in own-cell.



## Directional Cell Search : Graph Multicoloring Formulation

- A user receives multiple beams with varying powers from each base station.
- There are potential handover candidate beams from neighbor cells
- For each history handover user, there exists a single potential handover beam.
- An I/C vector is calculated based on the interference a user receives from its own-cell beams and the received power from potential handover beam.





#### Directional Cell Search : Beam Assignment Algorithm

Algorithm 1 Beam Assignment Algorithm

- Cell i using a valid beam schedule c, selects a new schedule c' = RandPerm{c} for cell i. Keep the beam schedules for other cells fixed.
- Find the set of UEs U<sub>i</sub> which are associated with cell i. For U<sub>i</sub>, calculate the I/C vector V<sub>c</sub> and V<sub>c'</sub> for beam schedules c and c'. Compute Δ = max(V<sub>c'</sub>) - max(V<sub>c</sub>),
- 3: if  $\Delta < 0$  then
- 4:  $c \leftarrow c'$
- 5: else
- $6: \quad c \leftarrow c$
- 7: end if



## Directional Cell Search : Simulation Setting

TABLE I SIMULATION PARAMETERS

| Simulation Configuration    |                                                                                                                                 |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Scenario                    | Manhattan grid, $800 \times 800m$                                                                                               |
| Boundary conditions         | Wrap-around in all directions                                                                                                   |
| Average Inter-site Distance | 100m                                                                                                                            |
| Number of BSs               | 48                                                                                                                              |
| Number of UE positions      | 2560                                                                                                                            |
| mmW carrier frequency       | 28 GHz                                                                                                                          |
| LOS PL model for mmW        | $61.4 + 20 \log_{10}(d)$                                                                                                        |
| NLOS PL model for mmW       | $72.0 + 30 \log_{10}(d)$                                                                                                        |
| LOS probability model       | $\left(\min\left(\frac{d_1}{d},1\right)\left(1-\exp\left(\frac{-d}{d_2}\right)\right)+\exp\left(\frac{-d}{d_2}\right)\right)^2$ |
| LOS correlation distance    | 10 m                                                                                                                            |
| Maximum mmW TX power        | 24 dBm                                                                                                                          |
| mmW antenna for BS          | $8 \times 8$ planar array                                                                                                       |
| Beamforming setting         | Analog beamforming with simple precoding                                                                                        |
| Number of beams             | 16, 8 or 4                                                                                                                      |
| Number of colors            | 16, 8 or 4                                                                                                                      |
| Handover margin(HOM)        | 10dB                                                                                                                            |



#### Directional Cell Search : Simulation Setting



Aalto University

#### Directional Cell Search : Simulation Results





## Directional Cell Search : Simulation Results

- The setting of 16 colors with 16 directional single beams results in best handover discovery SINR performance.
- Using less colors results in less overhead in neighbor cell search, but SINR performance will degrade and leads to an increased number of Radio Link Failures (RLFs).
- One iteration is almost optimal by local update of color patterns for each cell.



#### **Future Work**

- Extending the proposed self-organization framework to model other relevant aspects of 5G SON, most notably energy efficiency.
- Joint self-optimization of multiple parameters such as beam direction and transmission power.

