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Motivation

• Mobile location information acquisition is 
fundamental in building smart cites and 
intelligent transportation systems

• Seamless high-precision localization, especially 
on the network side, is a challenging problem 
in NLOS and GPS-denied environments

• High-resolution sensing functions are 
envisioned to be integrated in future 6G Radio 
Access Networks (RANs), which opens up new 
opportunities for high-precision positioning 
and tracking 
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State of the Art

• Current network-side 5G NR positioning 
techniques require rigorous calibration or 
accurate synchronization among network 
elements

• Conventional fingerprinting methods 
require a large number of densely-sampled 
measurements, which scales poorly to large 
areas and renders automation to dynamic 
environments challenging
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Principle of CSI Mapping

• High-dimensional multi-
antenna Channel State 
Information (CSI) strongly 
dependents on UE position, 
which is low-dimensional

• Manifold learning 
methods can be applied to 
map CSI data to a channel 
chart where nearby points 
correspond to nearby 
locations in geographical 
space
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Proposed mmWave Localization Framework

① CSI and Side-information 
Collection

② CSI Feature Extraction

③ Local CSI Dissimilarity 
Learning

④ Global CSI Dissimilarity 
Matrix construction

⑤ Semi-Supervised 
Manifold Learning
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Multi-antenna CSI Sample Collection

with

One CSI sample:

Labeled CSI data set:

Unlabeled CSI data set:
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CSI Feature Extraction

• BS uses MUSIC to extract 
Multipath Parameters

• Power Angular Profile (PAP)
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CSI Dissimilarity based on PAP

Point clouds of virtual transmitter points : 
(a) Without Clustering (b) With Clustering

Dissimilarity metric deduced 
from a virtual transmitter point cloud
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t-SNE (t-distributed stochastic neighbor embedding)

t-SNE

Widely used for visualizing high-dimensional data

unsupervised
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t-SNE Basic

N data samples

Dissimilarity matrix D

Low-dimensional

representation Z = { z1, . . . , zN }

Similarity probability matrix P Similarity probability matrix Q

Kullback-Leibler (KL) divergence

Mapping

Minimize
via gradient 

descent
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Apply t-SNE to CSI Data with PAP Dissimilarity

t-SNE

Small 
number of
neighbors
(perplexity)

Large
number of
neighbors
(perplexity)

CSI samples collected at colored 

positions

Can’t obtain 

absolute 

geographical 

location info.
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Semi-supervised t-SNE Problem

• To equip t-SNE with localization capability, we need to use 
some position labels to govern the learning process of t-SNE.

• To this end, we formalize the following semi-supervised t-SNE 
problem:
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Semi-supervised t-SNE Algorithm

• Four adjustable 
Parameters

• Map the labeled 
CSI to its fixed 
position during 
learning iterations

• The idea is simple,
and we will see it 
is effective!
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Performance Evaluation- Simulated Scenario

• GIS map data from OpenStreetMap (OSM)

• 8 BSs with ULAs, each has M = 16 elements

• A ray-tracing channel model is used to generate the 

multi-path channels

• The carrier frequency is 28 GHz, system bandwidth is 

256 MHz with 128 OFDM subcarriers

• UEs transmit signals with a fixed power of 23 dBm

• UEs on roads with a speed of 5 meters per second

• We collect 1500 CSI samples from UE traces
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Performance Evaluation - Metric

•Mean localization error (MLE)

U = 1425 unlabeled samples, L = 75 labeled samples
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Performance Evaluation - Learning Process

St-SNE iteration process with perplexity 
kt = 30, learning rate η = 1000, and 
momentum α = 0.6

The effects of perplexity kt in St-SNE on the 
localization performance
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Performance Evaluation - Comparisons
Compared to kNN and semi-supervised Laplacian Eigenmap (SLE)

Ground truth Estimated

Labeled anchor
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Performance Evaluation - Comparisons

Cumulative Distribution Function (CDF) of localization errors

• Positions of points far 
from the labeled 
anchors cannot be 
accurately estimated 
via kNN and SLE

7%

• St-SNE greatly reduces 
the errors of those 
points, with only 7% of 
unlabeled points 
having a error >15 m
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Conclusion
• We have proposed a machine learning method called St-SNE for 

mmWave multi-cell mobile localization.

• It embeds the high-dimensional multi-antenna CSI into the 2D 
map by governing the self-learning process of t-SNE with a few 
position labels.

• It is scalable and automatic in the sense that it could be 
implemented for multi-cell networks, with spatially sparse labeled 
samples, and does not require accurate network synchronization. 

• With relatively higher computation complexity.  A prospective 
research direction would be to use a graph or tree method to 
accelerate its computation of the probability matrixes.
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